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ABSTRACT

This paper deals with audio compensation in the car environ-
ment for the development of a hands-free spoken dialogue sys-
tem with barge-in functionalities. While in a preliminary work
we investigated the problem, given an interfering radio signal to
compensate, here we focus only on the compensation of speech
audio generated by a text to speech synthesizer. The latter one is
a more difficult signal to manage, as speech is colored and non
stationary or quasi stationary and this degrades the performance
of the AEC if a simple NLMS is used. In this paper we will
introduce a Subband Acoustic Echo Cancellation (SAEC) for
compensating the synthetic prompt speech and we will compare
it with a Fullband Acoustic Echo Cancellation (FAEC) demon-
strating the good effectiveness in terms of speed of convergence,
robustness against noise and computational complexity. The sys-
tem performance are being measured in terms of Word Error
Rate % (WER) by recognizing isolated and connected digits.

1. INTRODUCTION

In a preliminary work [1] a fullband NLMS based compensation
system was investigated to deal with speech recognition given
an interfering in-car radio signal. NLMS was applied on signals
belonging to real Italian SpeechDatCar database [1], where the
signals were acquired under various environmental conditions.
The time available to the system for convergence, here denoted
as ts and corresponding to the time interval between the radio
signal start time and the user speech start time, was large enough
to allow a good convergence of NLMS.

The purpose of that work was a preliminary study for the intro-
duction of a barge-in functionality in a hands-free spoken dia-
logue system. The barge-in functionality is the possibility the
user has to interrupt the system during the prompting of a voice
message. For this purpose it is necessary to remove the acoustic
echoes of the synthetic prompt speech from the far microphone
signal. For this reason, in this work we focus only on the audio
compensation of the synthetic speech, that is we investigate the
impact of different levels of background noise as well as the im-
pact of ¢, on a fullband and subband NLMS. The system perfor-
mance is measured in terms of WER %. The two AEC systems
are applied on a simulated database, which is characterized by
different values of SNR and SIR.

In the next section we describe SAEC and the method to con-
trol the step size for each subband. In section 3 a comparison
between SAEC and FAEC in terms of speed of convergence and
computational complexity is made. Section 4 refers to the HMM
recognizer used for the experiments. Section 5 reports on the de-
velopment of an artificial database used for the experiments and

shows the relative results for FAEC and SAEC. Finally the con-
clusions and the possible future work are reported in section 6.

2. SUBBAND ACOUSTIC ECHO CANCELLATION

In a subband acoustic echo canceller the reference and the far
microphone signals are split in M subbands through the Anal-
ysis Filter Bank (AFB), then NLMS is applied to each subband
independently and at last the signal is reconstructed through the
Synthesis Filter Bank (SFB) [2]. In general the down-sampling
factor K in the AFB is less/equal to the number of subbands M .
If K = M the filter bank is called critically sampled, otherwise
(K < M) itis non-critically sampled. The filter bank is derived
by the frequency “sliding” of a lowpass prototype filter of length
L, (L, = 320 in our experiments).

The downsampling in the AFB causes aliasing which is sup-
pressed in the SFB with a proper choice of the prototype fil-
ter. Aliasing is a disturbing signal for the NLMS convergence
process that can degrade seriously the system performance [3].
Critically sampled systems make use of cross-terms between ad-
jacent bands to cancel the aliasing [4], while for a non-critically
sampled system, the aliasing can be reduced by decreasing the
downsampling factor. In fact by decreasing K the distance be-
tween the bands increases, while the subband width remains the
same.

As computational load can be saved by using an efficient im-
plementation of the filter bank, here we adopted that reported in
[5], where the polyphase decomposition is exploited to remove
redundancy computations and the FFT algorithm is used for the
modulation. If the reference signal is real, in order to save more
computational load, it is possible to apply NLMS only on the
first M /2 + 1 subbands and then exploit the hermitian simmetry
in the frequency domain to reconstruct the full band signal.

To estimate the system impulse response in each subband it is
possible to apply the NLMS algorithm with a control of the step-
size parameter based on the method called “delay coefficients”
[6, 7, 8], which was used in other experiments for FAEC [1].
The subband step size control is described in the following sec-
tion. The approach of controlling the step-size parameter in each
subband was also adopted in [9], although in that case a differ-
ent technique was used to compute the optimal step-size for each
subband.

2.1. Subband step size control

As the outputs of the AFB are in the complex domain the NLMS
learning rule for complex signals must be used [2]
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Figure 1: System block diagram for SAEC with step size control computed via “delay coefficients”.

where

o £ is the time index.

e 4 is the subband index.

o (k) is the step size parameter for subband s.

o x;(k) = [zi(k) zs(k —1) - x;(k— L; —1)]” is the
complex vector of the reference signal at subband .

e h;(k) = [ho; h1; --- h(Li_l)i]T is the complex vector
of the estimated impulse response at subband z.

e L; is the length of the estimated impulse response at sub-
band 7. If L; are the same for every subband, L; can be
set to £, where L is the length of the fullband estimated
impulse response (h(k)).

o e;(k) = d;(k) —h{ (k)x;(k) is the complex error signal
at subband 1.

e d;(k) is the complex far microphone signal at subband :.

The step size in each subband is computed in the following way
Ellz:(k)"E [|mi(k)|’]
E [lei(k)|*]

where |m;(k)|> = |gi(k) — hi(k)|” is the system distance for
the subband 4. The powers of z;(k) and e; (k) are estimated via
IIR filtering with different smoothing constants for rising and
falling edges [7, 1]. The system distance is estimated via the
method called “delay coefficients” [6, 7], given:

pi(k) = @

Lg;—1

O = 25 3 (b’

i

©)

where Lg, is the artificial delay (in samples) introduced in each
subband. In our work Lg, is the same for all the subbands and
is defined as: Lq, = Lq/K, Where Ly is the artificial delay
introduced in the system before the AFB. In Figure 1 the system
block diagram for SAEC with step size control computed via
“delay coefficients” is reported.

3. COMPARISON BETWEEN FAEC AND SAEC

The most critical issue of NLMS is the low speed of convergence
in presence of colored signals such as speech and in-car noise. In
order to improve the convergence performance SAEC represents
a possible solution. However, the convergence improvement is
not evident in absence of colored background noise, due to the
use of non ideal filter banks [7].

On the other hand, under noisy conditions (such as in-car back-
ground noise) the speed of convergence of SAEC increases. In
fact NLMS identifies the system impulse response by minimiz-
ing the error on the full band. Then, when the error is smaller
than the background noise, NLMS cannot adapt anymore. If the
background noise is more concentrated in the low frequencies,
then residual echo in high frequencies can not be removed this
way degrading the recognition performance. Otherwise SAEC
identifies the system impulse response in each subband indepen-
dently, so it is able to cancel the interfering signal in the fre-
quencies where the background noise is not present. In Figure 2
an example of a simulated far microphone signal with the signal
after having applied SAEC or FAEC is reported. By inspecting
Figures 2 b) and c) it seems that the acoustic echoes are well sup-
pressed both for SAEC and FAEC, but the convergence speed in
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Figure 2: a) Far microphone signal b) SAEC output signal c)
FAEC output signal.

terms of normalized misalignment, defined as % [10]
and reported in Figure 3, shows that SAEC vyields a better con-
vergence than FAEC, because of its capability to remove echo in

the subbands where background noise is not present.

Moreover SAEC can reduce the computational load in case of
long impulse responses. The computational complexity for FAEC
in terms of real multiplications number (V) is given mainly by
the filtering and is proportional to:

NFAEC ~ 2L (4)

The computational complexity for SAEC is mainly given by the
sum of complexity of analysis and synthesis filter banks and

normalized misalignment dB
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Figure 3: Comparison between the normalized misalignment of
SAEC and FAEC.

complexity of adaptive filtering [7], that is

NsaECc ®  Milter bank t Nadaptive filtering = ®)
= (3%’ + 3% log, M) + (4L%)

Since here the system parameters are: L = 500, M = 32, K =
28, L, = 320, we have Neagc =~ 1000 and Ngagc ~ 93.

A drawback of SAEC is the introduction of a time delay which
depends on the length of the prototype filter, but with an appro-
priate choice of it this problem is not so severe.

The protoype filter length influences the aliasing and the good
quality of the reconstruction of the signal after the analysis and
synthesis filter banks.

The above mentioned technique was applied as preprocessing of
a speech recognition system which is described in the following
section.

4. HMM RECOGNIZER

The ASR system is based on a speaker independent continu-
ous density Hidden Markov Model (HMM)- based technology
developed at ITC-irst. HMM models correspond to a set of
34 acoustic-phonetic units. All of the HMMs have a left-to-
right topology and use output probability densities represented
by means of 64 Gaussian components with diagonal covariance
matrices. HMM training was accomplished through the standard
Baum-Welch training procedure.

The front-end processing is based on the computation of 12 Mel
scaled Cepstral Coefficients (MCCs) and the log-energy for each
analysis frame. The analysis step is 10 ms (with a Hamming win-
dow of 20 ms) and Cepstral Mean Subtraction is applied on the
entire length of the signal while the energy is normalized with
respect to the maximum energy value. The resulting parameters,
together with their first and second order time derivatives, are
arranged into a single observation vector of 39 components.
The training is characterized by 240 speakers, 5 hours of noisy
speech. Training was accomplished by using connected digit se-
quences.

For the test set we used clean (close-talk) speech signals ex-
tracted from the publicly available SPK Italian database [11].

5. TEST RESULTS

From the above mentioned clean database a noisy speech corpus
was created artificially in the following way. The prompt speech
was filtered with the measured system impulse response between
the loudspeaker and the far microphone. A sample of car back-
ground noise was recorded. The user speech derived from filter-
ing the close talk signals with the car impulse response. Then
the three signals were combined together to simulate the signal
picked up by the far microphone. The prompt speech and the
background noise were appropriately scaled to impose different
values of mean SNR and SIR. SIR is defined as the ratio between
the powers of the useful signal (user speech) and the interfering
signal (prompt speech), while SNR is the ratio between the pow-
ers of the useful signal and the car background noise.

Note that ¢, is an inner variable of the system and could signif-
icantly affect performance, since it sets the time available to the
sytem for a complete convergence.
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[ SIR/ISNR[dB] [ FAECid | SAECid | FAEC cd | SAECcd |

20/20 1.5% 0.81% 517 % 2.84%
20/15 1.67 % 0.72% 6.52 % 2.69 %
20/10 2.47 % 0.69 % 7.81 % 3.5%
20/5 3.72% 0.86 % 12.29 % 711 %
15/20 2.06 % 0.86 % 5.97 % 2.98 %
15/15 2.06 % 0.86 % 7.06 % 2.84%
15/10 25% 0.86 % 8.56 % 3.58 %
15/5 3.78 % 0.92 % 13.23 % 7.3%
10/20 25% 0.86 % 7.65 % 3.59 %
10/15 2.64 % 0.86 % 8.40 % 3.03%
10/10 3.28% 0.94 % 9.98 % 3.75%
10/5 4.61% 1.00 % 14.58 % 7.26 %
5/20 4.03 % 1.78 % 10.09 % 473 %
5/15 4.67 % 1.72% 11.13 % 423 %
5/10 6 % 1.75% 12.88 % 4.42 %

5/5 7.83 % 1.92 % 17.47 % 7.51 %

Table 1: Comparison between FAEC and SAEC for different
values of SNR and SIR in terms of WER % for the isolated digits
and connected digits task. ¢ is set to 4 seconds.

This work addresses both isolated and connected digit recogni-
tion tasks. The number of speakers is 30 (15 males and 15 fe-
males). The total number of isolated digits is 3600, while the
number of connected digit strings is 1000 (for a total number of
8000 digits).

After having applied an AEC algorithm (FAEC or SAEC) the
signals are manually segmented (based on an ideal Voice Activ-
ity Detector) and fed to the recognizer. In Table 1, test results
for different values of SNR and SIR are reported; ¢ was set to 4
seconds. The first column shows the different possible environ-
mental conditions, the second and third columns report on the
WER % results for the isolated digits (id) and finally the last two
columns report on the WER % results for the connected digits
(cd). One can notice the large improvement that SAEC yields
particularly in presence of high background noise and interfer-
ing signal; for a SIR =5 dB and a SNR =5 dB the improvement
is from 7.83 % WER to 1.92 % WER in the case of isolated digit
task. The performance improves from 17.47 % to 7.51 % in the
case of connected digit task.

Figure 4 reports on WER % as a function of ¢, in the connected
digit task, given three different environmental conditions. One
can notice that SAEC yields a better performance than FAEC in
all of the cases.

6. CONCLUSIONS

In this work we investigated on a subband acoustic echo can-
celler for the introduction of a barge-in functionality in a hands-
free in-car spoken dialogue system. A comparison between sub-
band and fullband echo canceller showed the greater effective-
ness of the former in terms of speed of convergence, robustness
against noise and computational load. Morover SAEC yields a
greater system performance in terms of WER %. Under the most
adverse environmental conditions (SNR =5 dB, SIR =5 dB) it
is able to recover 54 % of errors for the connected digit task and
57 % of errors for the isolated digit task.

Finally, note that a study is needed on the possible errors intro-
duced by a real VAD (here an ideal VAD was assumed). Future
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Figure 4: WER % as a function of ¢, for the connected digit task
and three different environmental conditions.

work includes the development of a real VAD integrated in the
system and the analysis of its influence on the system perfor-
mance.

7. REFERENCES

[1] M. Matassoni, M. Omologo, and C. Zieger, “In-car audio
compensation based on nlms for hands-free speech recog-
nition,” in International Conference on Acoustics, Kyoto,
Japan, April 2004, pp. 2591-4594.

[2] S.Haykin, Adaptive Filter Theory, Prentice Hall, 2002.

[3] W. Kellermann, “Analysis and design of multirate syetms
for cancellation of acoustical echoes,” in ICASSP, New
York, 1988, pp. 25710 — 2573.

[4] A. Gilloire and M.\Vetterli, “Adaptive filtering in subbands
with critical sampling: Analysis, experiments and applica-
tions to acoustic echo cancellation,” I1EEE Trans. on Sg-
nal Processing, vol. SP-40 (No.8), pp. 1862-1875, August
1992.

[5] S. Weiss, L. Lampe, and R. Stewart, “Efficient subband
adaptive filtering with oversampled gdft filter banks,” in
IEEE/IEE Int. Workshop on Acoustic Echo and Noise Can-
cellation (IWAENC), London, September 1997, pp. 148-
151.

[6] S. Yamamoto and S. Kitayama, “An adaptive echo can-
celler with variable step gain method,” Trans. IECE Japan,
vol. E 65, Jan. 1982.

[7] C.Breining, P. Dreiseitel, E. Hansler, A. Mader, B. Nitsch,
H. Puder, T. Schertler, G. Schmidt, and J. Tilp, “Acoustic
echo control: An application of very-high-order adaptive
filters,” IEEE Sgnal Processing Magazine, July 1999.

[8] E.Hansler and G. Schmidt, Acoustic Echo and Noise Con-
trol: A Practical Approach, Wiley, 2004.

[9] G. Schmidt, “Step-size control in subband echo cancella-
tion systems,” in International Workshop on Acoustic Echo
and Noise Control (IWAENC), Pocono Manor, Pennsylva-
nia, USA, September 1999, pp. 116-119.

[10] J. Benesty and Y. Huang, Adaptive Sgnal Processing,
Springer, 2003.
[11] http://mww.elda.org.

192



