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ABSTRACT 

Over the past years, methods of short-time spectral modifica-
tion have proven especially effective at reducing noise for the 
enhancement of speech. Key to these methods are noise-
reduction gain formulae, a class of frequency-domain data 
windows, that are applied to successive blocks of the short-
time Fourier transform of the noisy speech. This paper pro-
vides a unified treatment of several noise-reduction gain for-
mulae from the context of statistical estimation theory, and in 
doing so attempts to illuminate relationships shared by the 
most common gain functions found in the literature. 

1. INTRODUCTION 

The noise reduction problem is one of recovering a speech 
signal of interest )(ns  from the noisy observation 
 )()()( nvnsny +=  , (1) 
where )(nv  represents unwanted additive noise. Signal and 
noise are treated as sample functions associated with underly-
ing stationary, zero-mean, uncorrelated random processes. In 
this case, the power spectral density of )(ny , 

∑ −= m
mj

yy emRP ωω )()( , is given by 
 )()()( ωωω vsy PPP +=  , (2) 
where )}()({)( * mnynyEmRy +=  is the covariance associ-
ated with )(ny , }{⋅E  denotes expectation, )(ωsP  and )(ωvP  
are power spectral densities, and ω  denotes Fourier fre-
quency. Because )(ωyP  can be estimated from the observa-
tion, if )(ωvP  is known or can be sufficiently estimated, the 
power spectral density of )(ns  can be estimated by rearrang-
ing (2) to yield 
 )()()( ωωω vys PPP −=  . (3) 
To estimate )(ns  we may, equivalently, estimate its discrete 
Fourier transform ∑ −= n

njensS ωω )()( . Suppose we wish to 
do so by applying a linear filter )(ωH  to the noisy observa-
tion, that is, by forming an estimate )(ˆ ωS  given by 
 )()()(ˆ ωωω YHS =  . (4) 
And, consider the following improvised filter: 
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This is simply the right-hand side of the recovery relation in 
(3) normalized to result in a unit-less frequency-dependent 

gain function. What does this gain function do? First, because 
)(ωsP  and )(ωvP  are related through (2), )(ωH  satisfies 

1)(0 ≤≤ ωH . In the absence of noise )(ωvP  = 0, and so 
)(ωH  = 1 as is desired. When noise is present and )(ωvP  >> 
)(ωsP , 1)( <<ωH  and tends to zero as )(ωvP / )(ωsP  in-

creases. Consequently, at frequencies ω  where the signal 
dominates the noise, )(ˆ ωS  is nearly )(ωS ; and at frequencies 
where the noise dominates, )(ˆ ωS  is close to zero. The impro-
vised filter in (5) therefore provides near recovery of the sig-
nal at least at frequencies where the noise is absent or nearly 
so. (Note that (5) provides perfect recovery of )(ωS  when 

)(ωsP  and )(ωvP  share no frequencies of common support.) 
Some will recognize (5) as the frequency domain form of the 
Wiener filter, a type of optimum estimator. In this work we 
are interested in the general form in (4), in which the (noise-
reduced) signal estimate is produced by applying a filter, or 
frequency domain data window, to the noisy spectrum. 

2. FREQUENCY DOMAIN FORMULATION 

The majority of work in noise reduction has focused on meth-
ods of short-time spectral modification as a means of reducing 
noise in speech time series. This general technique, which uses 
the short-time Fourier transform (STFT), is both computation-
ally simple and, more importantly, relatively effective in en-
hancing speech. Specifically, any time series )(nx , stationary 
or otherwise, can be represented by its short-time Fourier 
transform (STFT) 
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KknjenmxnwmkX π , (6) 

where w(n) is the analysis window, N dictates the duration or 
window of time over which )(nx  is considered stationary, K 
is the number of frequencies at which the STFT is computed, 
and ∞<<−∞ m  and 1,...,0 −= Kk  are indices of time and 
frequency, respectively. Noise reduction is achieved through a 
short-time spectral gain function applied to successive blocks 
of the STFT. Ideally, if the noise can be eliminated from the 
STFT of )(ny , the signal estimate )(ˆ ns  can be recovered 
through an appropriate synthesis procedure.  
For the analysis presented in the remainder of this paper, we 
consider the frequency domain dual of (1). Let, 
 VSY +=  (7) 
denote the noisy spectral sample where, for given k and m, 

),( mkYY = , ),( mkSS =  and ),( mkVV = . We assume S  
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and V  are zero-mean, independent, complex Gaussian ran-
dom processes. Though these conditions are not strictly true 
for the short-time Fourier transform spectral representations 
used in the application of speech noise reduction, they are 
neither unusual nor problematic assumptions. A real-valued 
Gaussian time series passed through a bandpass-filter-
demodulator structure results in a complex-valued Gaussian 
with independent real and imaginary components [1]. This 
same structure is used in any noise reduction scheme employ-
ing block frequency-domain processing. It is also assumed 
that, for any lk ≠ , ),( mkS  and ),( mlS  are independent and 

),( mkV  and ),( mlV  are independent. The importance of this 
assumption in the derivation of noise reduction gain formulas 
is that the problem of optimally estimating the entire signal 
waveform can be decomposed into multiple independent prob-
lems of estimating the spectral components of the signal. 

2.1. Minimum mean-squared-error spectral (MMSES) 
estimate  

We consider first the MMSE estimate of the complex spectral 
sample S  in (7). The following derivation is based on Van 
Trees’ presentation of Bayesian estimation theory [2]. 
The MMSE estimate of S  is that Ŝ  which minimizes the 
mean-squared-error Bayes “cost” 

 ∫∫
∞

∞−

∞

∞−

−−= irir dSdSYSSpSSSSSSC )|,()ˆ)(ˆ()ˆ,( *  (8) 

where )|,( YSSp ir , or simply )|( YSp , is the conditional, or 
posteriori, probability of s  given the observation Y . In (8), 
S  has been decomposed as ir jSSS +=  to emphasize that 

)|( YSp  is a joint probability defined over the real and imagi-
nary parts of S . Because )|( YSp  is nonnegative, (8) is a 
convex function of Ŝ . Computing the complex gradient of (8) 
with respect to Ŝ  and setting the result equal to zero to arrive 
at the minimum gives 

 ∫∫
∞

∞−

∞

∞−

= irir dSdSYSSpSS )|,(ˆ
MMSES   (9) 

as the optimum estimate. The MMSE estimate is recognized 
as the conditional mean of S , a result that is fundamental to 
signal estimation theory.  
To compute (9), the conditional density )|( YSp  is needed. 
Assume signal and noise are (complex) Gaussian with prob-
ability density functions [1, 3] 
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where 2
Sσ  and 2

Vσ  are the respective variances, or powers. 
Using Bayes’ Rule, any valid conditional probability density 
satisfies )()|()()|( SpSYpYpYSp = . Consequently, 

)(/)()|()|( YpSpSYpYSp = . Now, )|( SYp  is the prob-
ability of Y  occurring given that S  has occurred. From (7), 
with S  constant, Y  is seen to have the density of V  but with 
mean S , that is, SYVVpSYp −== |)()|( . Combining 

)|( SYp  with )(Sp  in (10) through Bayes’ Rule gives 
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where )/( 22222
VSVSZ σσσσσ += . Because ∫

∞
∞−

dSYSp )|(  is, 

for any valid conditional density, equal to unity, )(Yp  occur-
ring in the denominator of (11) serves only as a normalization 
factor. Furthermore, since (11) itself is recognized as a Gaus-
sian probability density function, the mean of )|( YSp  can be 
read directly from (11) and is, from the discussion above, 
equal to the MMSE estimate of S . Thus, 

 YS
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22
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σσ
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+

=  . (12) 

Since S  and V  are uncorrelated, (7) implies  222
VSY σσσ += . 

So, (12) can be rewritten 

 YHS MMSESMMSES
ˆ =  , 2

22

MMSES
Y

VYH
σ

σσ −
=  . (13) 

The form in (13) is identical to the Wiener linear filter in (5). 
This is because, for Gaussian quantities, the MMSE waveform 
estimate is always a linear function of the noisy observation 
and so the two optimum MMSE solutions coincide [2]. 

2.2. Maximum a-posteriori spectral estimate 

Also fundamental to estimation theory is the maximum a pos-
teriori (MAP) estimate. The MAP estimate of the signal in (7) 
is that S  which is most likely to occur given that the noisy 
observation has already occurred. In other words, 
 )|(maxargˆ

MAP YSp
S

S =  . (14) 

The maximum occurs at the peak of the conditional probabil-
ity density. From (11), )|( YSp  achieves its peak when the 
exponential’s argument equals zero, and this occurs at the 
conditional mean, that is, at (12). Thus, the MAP estimate of 
the signal component coincides with the MMSES estimate. 
This association always occurs, as long as density )|( YSp  is 
unimodal (single maximum) and symmetric about its mode 
[2]. 

2.3. Maximum likelihood spectral-power (MLSP) estimate  

By assuming Gaussian processes for the signal and noise, Y  
in (7) is also Gaussian and has density  
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Assuming 2
Vσ  is known (in practice it can be estimated well), 

the variance of the signal is all that is necessary to fully de-
scribe the density of Y . Consider the problem of estimating 

2
Sσ  from observation Y  and the known noise variance 2

Vσ . 
If the signal variance in (15) is viewed as a conditioning pa-
rameter, that is, by writing )|()( 2

SYpYp σ= , the maximum-
likelihood estimate [2] of 2

Sσ  is that which maximizes (15) 
given observation Y . Eq. (15) is a convex function of 2

Sσ ; 
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taking its derivative with respect to 2
Sσ  and setting the result 

equal to zero gives 

 222
MLSP,ˆ VS Y σσ −=  (16) 

as maximum-likelihood estimate of the signal power. This 
variance estimate can be used to construct an estimate of the 
S  itself. Consider  

 Y
Y

S Sσ
=ˆ  . (17) 

The mean and variance of (17) are easily shown to match 
those of S , so (16) is consistent with respect to the second-
order statistics of the signal of interest. Using (16) in (17) 
results in the maximum-likelihood spectral-power estimate of 
the signal 

 YHS MLSPMLSP
ˆ =  , 

Y
Y

H V
22

MLSP
σ−

=  . (18) 

Some may recognize (18) as the so-called power-subtraction 
method of noise reduction. The association of this maximum-
likelihood problem with the power-subtraction method of 
noise reduction was presented by McAulay and Malpass [4]. 

2.4. Maximum likelihood spectral-amplitude (MLSA) es-
timate  

To review, the maximum-likelihood spectral-power estimate is 
derived from the maximum-likelihood estimate of the signal’s 
variance, or power, given the noisy observation and noise 
variance, while the MMSE spectral estimate is optimal as an 
estimate of the (complex) signal itself. 
Seeking yet another estimate, McAulay and Malpass [4] also 
considered a maximum likelihood estimate of the signal’s 
spectral magnitude or amplitude. Representing S  in terms of 
its amplitude and phase components, the noise reduction prob-
lem (7) is recast as 
 VAeY j += φ . (19) 
Motivation for estimating the envelope of the signal comes 
from knowledge that human speech perception is less sensitive 
to phase corruption as it is to corruption of the speech enve-
lope. In this sense, estimation of the phase is secondary to that 
of the spectral amplitude. 
In this approach to estimating the spectral amplitude, A  is 
considered an unknown yet deterministic parameter, while φ  
is treated as a random quantity. The maximum likelihood es-
timate of the amplitude is that A  which maximizes the prob-
ability of the observation Y  occurring, that is, 
 )|(maxargˆ

MLSA AYp
A

A =  . (20) 

Recognizing that Y  is a function of both amplitude and 
phase, )|( AYp  is found from the conditional density of Y  
given both A  and φ , ),|( φAYp , by removing the contribu-
tion due to the phase. We have 

 ∫
−

=
π

π
φφφ dpAYpAYp )(),|()|(  . (21) 

Now, ),|( φAYp  is given by the density of V  but with a 
mean determined by the fixed but unknown signal component, 
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Using (22) in (21), and, lacking additional information, assum-
ing a uniform density for the phase, gives 
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Recognizing the trailing integral in (23) as the zeroth-order 
modified Bessel function, )/||2( 2

0 VYAI σ , (23) reduces to 

 )/||2(1)|( 2
0

)|(|1

2

22
2

V
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YAIeAYp V σ

πσ
σ

+−
=  . (24) 

It is this density that we wish to insert into (20). Unfortu-
nately, doing so does not result in a closed-form relation since 
the Bessel function is not reducible. For 1|| >>x , however, 

||2/|)exp(||)(|0 xxxI π≈  [5], and the approximation im-
proves as || x  increases. Applying this approximation to (24) 
gives  
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for 1/||2 2 >VYA σ . Eq. (25) is a convex function of A ; dif-
ferentiating with respect to A  and setting the result to zero to 
extract the peak gives 
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22
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=   (26) 

as the (approximate) maximum likelihood estimate of the sig-
nal’s amplitude. Eq. (26) is seen to be an arithmetic average of 
the modulus of the observation and an estimate of the modulus 
of the desired signal. Note that, in the absence of noise, 

02 =Vσ  and so ||||ˆ
MLSA SYA == , as desired. An estimate of 

the desired signal waveform is constructed by appending the 
phase of Y  to (26). This results in the estimate 

 YHS MLSAMLSA
ˆ =  , 
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2.5. MMSE spectral-amplitude (MMSESA) estimate 

The maximum-likelihood spectral-amplitude estimate was 
derived using a model in which the amplitude is considered 
deterministic while the phase is treated as random. Alterna-
tively, the spectral amplitude can be modeled as a random 
quantity, like the phase, and estimated within the MMSE 
framework. 
For the reasons discussed in section 2.1, the MMSE estimate 
of the (now random) spectral amplitude A  is given by the 
conditional mean 
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MMSESA )|(ˆ dAYApAA  . (28) 

Using Bayes’ Rule, the conditional probability )|( YAp  satis-

fies ∫−= φφφ dApAYpYpYAp ),(),|()()|( 1 , where ),( φAp  

is the joint density of A  and φ . Applying this in (28) gives 

 

∫ ∫

∫ ∫
∞

∞

=

0

2

0

0

2

0
MMSESA

),(),|(

),(),|(
ˆ

π

π

φφφ

φφφ

dAdApAYp

dAdApAYpA

A   (29) 

where denominator )(Yp  has been expanded in terms of the 
conditional density ),|( φAYp  to expose like terms. Condi-
tional density ),|( φAYp  is given in (22). Regarding ),( φAp , 
under the aforementioned signal model in which the real and 
imaginary components of S  are independent complex Gaus-
sian random variables, the joint density ),( φAp  is separable, 
i.e., )()(),( φφ pApAp = , where )(Ap  is a Rayleigh density 
and )(φp  is a uniform density. These densities are given by 
[2, 3] (for πφπ ≤≤−> ,0A ). 
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Using (30), both numerator and denominator in (29) are re-
duced by first evaluating the integral with respect phase as 
was done in (21). The result is 
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With manipulation, one can show that the numerator and de-
nominator of this expression are in the form of the second and 
first moments, respectively, of the Rician density function [6, 
7]. Ephraim and Malah [8] have shown that (31) reduces to 
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where )(1 ⋅I  is the first-order modified Bessel functional, 
)1/( ξγξυ += , and where 22 / VS σσξ =  and 22 /|| VY σγ =  

are, respectively, the a priori and a posteriori signal-to-noise 
ratios. To arrive at an estimate of S , the optimum MMSE am-
plitude is appended to the noisy phase, as in (27), resulting in 

 YHS MMSESAMMSESA
ˆ =  , 

Y
AH MMSESA

MMSESA

ˆ
=  (33) 

Thorough treatment of this estimator can be found in [8]. 

2.6. Comparison of gain formulas 

A plot of several noise reduction gain formulas is shown in 
Fig. 1. All gain functions are plotted as a function of a priori 

signal-to-noise ratio ξ . Where a posteriori SNR γ  is required, 
the substitution 1+= ξγ  has been made. 

2.7. Discussion 

For the most part, the noise reduction gain formulas discussed 
here can be derived using classical detection and estimation 
principles formalized by Norbert Wiener, with subsequent 
specific contributions by Rice [6], while at Bell Laboratorties 
in the 1950s, and Middleton [7]. Much of this theory is pre-
sented in seminal texts by Van Trees [2] and Middleton [7]. 
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Figure 1. Gain formulae as a function of a priori input 
signal-to-noise ratio. Top to bottom are the MLSA, MLSP, 
MMSESA and MMSES (aka Wiener) estimates. 
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