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ABSTRACT

In this paper, we consider the blind multichannel dereverberation
problem for a single source. The multichannel reverberation im-
pulse response is assumed to be stationary enough to allow estima-
tion of the correlations it induces from the received signals. It is
well-known that a single-input multi-output (SIMO) filter can be
equalized blindly by applying multichannel linear prediction (LP)
to its output when the input is white. When the input is colored,
the multichannel LP will both equalize the reverberation filter and
whiten the source. We exploit the observation that a multichan-
nel reverberation filter tends to become allpass as the number of
channels and/or the reverberation delay spread increases. As a
result, the sum of the channel output correlations approximates
the source correlation structure which can hence be used to deter-
mine a source whitening filter. Multichannel LP is then applied
to the sensor signals filtered by the source whitenening filter, to
obtain source dereverberation. It is important to emphasize that
non-stationarity of the source is irrelevant as long as the source
correlations are estimated with the same temporal averaging as for
the multichannel linear prediction.

1. INTRODUCTION

The quality of speech captured in real-world environments is in-
variably degraded by acoustic interference. This interference can
be broadly classified into two distinct categories: additive and con-
volutive. The convolutive interference (commonly referred to as
reverberation) is due to sound wave reflections from surrounding
walls and objects. It leads to a modification of the speech signal
characteristics. Therefore, it constitutes a major problem in speech
recognition, speaker verification, and general auditive confort in
”hands-free” telephony applications. Blind dereverberation is the
process of removing the effect of reverberation from an observed
reverberant signal. Reducing the distortion caused by reverbera-
tion is a difficult blind deconvolution problem, due to the broad-
band nature of speech and the length of the equivalent impulse
response from the speaker’s mouth to the microphone. Speech en-
hancement for dereverberation and noise reduction in reverberant
environments has been addressed extensively; but no adequate so-
lution has yet been established [3, 2].

A simple multi-microphone speech dereverberation system is
the delay-and-sum beamfomer [1, 2]. The dereverberation is per-
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members: Bouygues Télécom, Fondation d’entreprise Groupe Cegetel,
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formed by a simple averaging over the sensor outputs, delayed so
as to focus in the direction of the desired speaker. The direction
of arrival is generally adapted using a second-order statistic ap-
proach. In [4], the authors propose an alternative adaptive filtering
approach using a kurtosis metric on the LP residual signal. They
seek to find a blind deconvolution filter that makes the LP residual
as non-Gaussian as possible. They show that the proposed tech-
nique achieves significant improvement in performance over the
delay-and-sum beamformer.

A second class of speech dereverberation technques is based
on source-filter speech production. The source-filter model de-
scribes speech production in terms of an excitation sequence exit-
ing a time-varying all-pole filter. Dereverberation is achieved by
attenuating the peaks in the excitation sequence (due to room re-
verberation), then synthesizing the enhanced speech using the en-
hanced LP residual on the all-pole filter (estimated from the rever-
berant speech). It is clear that an important assumption is made;
that the LP coefficients are unaffected by reverberation. In [5], the
authors propose using LP coefficients obtained by spatial averag-
ing of the LP coefficients estimated on each microphone. In fact,
by applying statistical room acoustic theory, one can show that the
spatially expected values of the predicted LP coefficients obtained
from the reverberant speech are equal to those obtained from clean
speech.

Another way to address the problem is the use of an explicit
model for the stationary channel impulse response. To avoid any
channel-source identification ambiguities, each non-stationary source
is modelled by a block stationary AR process; and each chan-
nel path by a stationary subband all-pole filter [6, 7]. Then us-
ing a Bayesian framework, the parameters of the distortion fil-
ter get estimated (source parameters are considered as nuisance
parameters). In [3], the authors focus on the single-source two-
microphone system; and solve the distortion due to the channel-
source non-identification ambiguities using a common polynomial
extraction technique: the common factor is extracted as a charac-
teristic polynomial of the two-channel linear prediction matrix.

As we have seen, spatial-diversity and channel stationarity are
two key ingredients in the multi-microphone speech dereverbera-
tion problem. This motivates us to propose a three-stage approach
for speech dereverberation.

• First, the colored non-stationary speech signal is transformed
into an iid-like signal (by taking advantage of the spatial
and temporal diversities).

• Then, a blind channel predictor is computed based on pre-
processed reverberant speech.

• Finally, speech signal dereverberation is performed using a
zero-forcing equalizer based on the predictor computed in
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the previous step.

This paper is organized as follows. In section 2, the multi-
channel spatial diversity is investigated. The speech dereverbera-
tion procedure will then be derived in section 3. The performance
of the algorithm is evaluated in section 4, and finally a discussion
and concluding remarks are provided in section 5.

2. MULTICHANNEL SPATIAL DIVERSITY

We consider a clean speech signal,s(n), produced in a reverber-
ant room. The reverberant speech signal observed onM distinct
microphones can be written as:

y(k) = H(q)s(k) (1)

wherey(k) = [y1(k) · · · yM (k)]T is the reverberant speech sig-
nal, H(q) = [H1(q) · · ·HM (q)]T =

P
i
hiq

−i is the SIMO
channel transfer function, andq−1 is the one sample time delay
operator.

To investigate the effect of the multichannel spatial diversity,
we consider a rectangular room with dimensionsLx = 8m Ly =
10m andLz = 4m, and with wall reflection coefficientsρx =
0.5, ρy = 0.5, andρz = 0.2. A speech signal with duration of
8.8s, and sampled at 8 kHz is used as the original source signal
(figure 1). The reverberant speech signal is observed on8 distinct
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Fig. 1. Anechoic speech signal.

microphones. A computer implementation (graciously provided
by Geert Rombouts from K.U. Leuven) of the image method as
described in [8] is used to generate synthetic room impulse re-
sponse for the microphones.

Figure 2(a) superposes the magnitudes of channel transfer func-
tions |Hk(f)|2 k = 1 : M between the source and theM = 8
microphones. The transfer function magnitude of the multichannel
reverberation filter

PM

k=1
|Hk(f)|2 is plotted in figure 2 (b). As

can be seen, the multichannel transfer function tends to become
flat, and the multichannel reverberation filter tends to be all-pass.
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Fig. 2. Mono and multichannel transfer function magnitudes

By summing the spectra of the received signals, we get:

MX
k=1

Sykyk
(f) =

MX
k=1

|Hk(f)|2 Sss(f) ≈ cSss(f) (2)

Then, due the multichannel spatial diversity, the superposition of
the spectra of the received signals can estimate (up to a multiplica-
tive constant c) the source spectrum (figure 3),
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3. SPEECH DEREVERBERATION PROCEDURE

Motivated by the previous observations, we propose in this con-
tribution a processing scheme that works with three cascade of
stages:

• Source whitening stage: removes correlation due to the speech
signal.

• Multichannel prediction stage: computes a blind multichan-
nel predictor (using pre-processed reverberant speech).

• Dereverberation stage : equalizes the channel impulse re-
sponse (using a zero-forcing equalizer based on the predic-
tor computed in the previous step).

3.1. The source whitening stage

As we have seen previously, due to the multichannel spatial diver-
sity, the superposition of the spectra of the received signals can
estimate (up to a multiplicative factor) the source spectrum. This
motivates us to remove correlation due to the source speech signal
by compensating the common part on the multichannels impulse
response. As this common part is due to the anechoic speech sig-
nal, it can be modeled as an AR process. The common AR co-
efficients can be estimated as those that minimize the sum of the
prediction errors, averged over the microphones:

e =

MX
k=1

∞X
n=0

e
2
k(n)

=
MX

k=1

∞X
n=0

"
yk(n) −

lX
j=1

ajyk(n − j)

#2

(3)

The previous optimization problem leads to the normal equations:26664 r0 r1 · · · rl−1

r1 r0 · · · rl−2

...
. . .

...
rl−1 · · · r1 r0

3777526664 a1

a2

...
aL

37775 = −

26664 r1

r2

...
rl

37775 (4)
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where -rj =
MX

k=1

rykyk
(j)

- rykyk
(j) represents the correlation at the time-lagj of the

received signal at thekth microphone
- {aj} are the common AR parameters.

In figure 4 we superpose the anechoic speech signal periodogram,
and the AR spectral models estimated either using the source sig-
nal directly, or the sum of the correlation sequences of theM re-
verberant signals.
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Fig. 4. Source periodogram, spectrums of AR processes estimated
using the clean and the reverberant signals (l = 20, M = 8).

It can be seen that the AR Model estimated using reverberant sig-
nals gives a good estimation (up to a scalar) of the clean speech
spectrum. Thus, it can be used to pre-process the reverberant
speech in order to transform the colored source speech signals into
a white signal.

A periodic input signal (which is perfectly predictible) may
lead to identifiability problem for the SIMO channel: the predictor
will have tendency to kill the signal rather than to whiten it. To
alleviate this problem, we propose taking advantage from the sig-
nal non-stationarity (that can be interpreted as a form of temporal
diversity). We suggest considering the totality of the speech sig-
nal in order to calculate the AR coefficients (which estimates the
averaged speech spectrum). It is important to emphasize that non-
stationarity of the source is irrelevant as long as the source corre-
lations are estimated with the same temporal averaging as for the
multichannel linear prediction. The temporal diversity becomes a
byproduct of this requirement.

3.2. The multichannel prediction stage

The fundamental concept of blind estimation of SIMO linear sys-
tems arises from the observation that a rank one vector MA process
can also be fully described as a rank one AR process under ap-
propriate channel conditions. This observation allows prediction
based algorithms to be developed for blind channel deconvolution.

The source whitened reverberant signal observed onM dis-
tinct microphones can be written as:

x(k) = a(q)y(k) ≈ H(q)es(k) (5)

wherex(k) = [x1(k) · · ·xM (k)]T , a(q) = 1 +
Pl

j=1
ajq

−j is
the linear prediction error filter of the source signal (performed in
the previous stage),es(k) is the source prediction error.

Consider now the problem of predictingx(k) from theL lat-
est observationsXL(k−1) = [xT (k−1) · · ·xT (k−L)]T . The

prediction error is given by:ex(k) = x(k) +

LX
i=1

AL,ix(k − i) = ALXL+1(k) (6)

whereAL = [Im AL,1 · · · AL,L], AL,i are the linear prediction
filter coefficient matrices that should be determined to minimize
the mean squared value ofex(k), L denotes the prediction order.
Minimizing the energy of the prediction error leads to the system
of equations (for large enoughL [9]):

Sexex(z) = AL(z)Sxx(z)A†
L(z) = h0Seses(z)h0

H (7)

where -Sexex(z), Sxx(z), andSeses(z) denote respectively the spec-
trum of the reverberant signal prediction error, reverberant signal,
and source prediction error signals.

- A(z) =
PL

i=0
AL,iz

−i denotes the prediction error filter,
computed by solving the well-known normal equations.A†(z) is
the matched filter associated toA(z).

- h0 = H(+∞) represents the first vector coefficient of the
SIMO channel filter, which can be estimated (up to a scalar) as the
eigenvector corresponding to the maximum eigenvalue of the LP
residual correlation matrixrexex(0).
Note that the proposed approach can be easily extended to the pres-
ence of an additive white noise, since the white noise variance can
be easily identified and compensated for in the reverberant signal
covariance matrix.

A relevant issue with the linear prediction approach is the
alignment of the received signals on the various microphones(delay
compensation for direct path). This leads to an increase in the pre-
diction performance, and allows the use of shorter predictor. To
estimate delays, a brut force method can be used by performing
LP for all delay combination and choosing the one that maximizes
the largest eigenvalueλmax of the prediction error covariance ma-
trix rexex(0).

3.3. The dereverberation stage

Based on the predictor performed in the previous stage, the spa-
tiotemporal zero-forcing equalizer (called Delay-and-Predict equal-
izer) can be computed as:

FD&P(q) = h
H
0 AL(q)D(q) (8)

whereD(q) is a diagonal matrix of delays aligning the direct path
contributions in theM reverberant signal.
Thus, the dereverberated speech signal can be computed as:bs(k) = FD&P(q)y(k) = h0

H
AL(q)y(k) (9)

Note that the delays inD(q) are the same as in the delay-and-sum
beamformer, in whichh0

HAL(q) gets replaced by|1 · · · 1|

4. EXPERIMENTAL RESULTS

To analyze the validity of the proposed technique, we consider the
reverberation scenario described in section 2. The delays for first
paths are assumed to be known. Figure 5 (a) plots the equalized
channel (FD&P ∗H) impulse response and spectrum, and the spec-
trum of the whitened source speech signal (preprocessed using a
20-order linear predictor).
We remark that due to the fact that the speech signal is a band-
pass signal (observe values on very high and low frequencies), the
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Delay-and-Predict equalizer has a tendency to amplify the missing
frequency components (as it is a zero-forcing equalizer). To mini-
mize this side effect, a larger order source whitening LP filter can
be used (figure 5 (b)).
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Fig. 5. Equalized channel impulse response and spectrum, and the
source preprocessed speech signal. (a)l = 20. (b) l = 100

Figure 6 shows the increase of the dereverberation performance

in terms of Signal-to-Echo Ratio (SER =
σ2

s

MSE
), as a function

of the source whitening LP order.
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(M = 8,L = 100)

We remark also that the SER gain (G =
SERD&P

SERD&S

) is espe-

cially important if only few microphones are available (see fig-
ure 7). This is due to the fact that multichannel linear predic-
tion performs well even using only two microphones; whereas the
beamforming technique becomes an equalizer as the number of
microphones increases.

5. CONCLUSION

In this paper, a linear prediction based dereverberation technique
was proposed. The multichannel reverberation impulse response is
assumed stationary enough to allow estimation of the correlations
it induces in the received signals. Spatial, temporal, and spectral
diversities are exploited to transform the source speech signal into
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an whiter signal. An equalizer is then computed based on a mul-
tichannel linear prediction technique. Simulations shows that the
Delay-and-Predict equalizer performs better than the delay-and-
Sum beamformer, specially if only few microphones are available.
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