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ABSTRACT

This paper introduces new algorithms for the blind separation of
audio sources of instantaneous and convolutive mixtures using
modal decomposition. Indeed, audio signals and, in particular,
musical signals can be well approximated by a sum of damped
sinusoidal (modal) components. Based on this representation,
we propose a two steps approach consisting of a signal analysis
(extraction of the modal components) followed by a signal syn-
thesis (pairing of the components belonging to the same source).
For the signal analysis, we consider a parametric estimation al-
gorithm using ESPRIT technique. A major advantage of the pro-
posed method resides in its ability to separate more sourcesthan
sensors in the instantaneous mixture case. Simulation results are
given to assess the performance of the proposed algorithm.

1. INTRODUCTION

The problem of blind source separation consists of finding inde-
pendent source signals from their observed mixtures without a
priori knowledge on the actual mixing matrix.
The source separation problem is of interest in various appli-
cations [1] such as the localization and tracking of targetsus-
ing radars and sonars, separation of speakers (problem known
as “cocktail party”), detection and separation in multipleaccess
communication systems, independent components analysis of
biomedical signals (EEG or ECG), separation of multispectral
astronomical images etc.
In the case of non-stationary signals (including the audio sig-
nals), certain solutions using time-frequency analysis ofthe ob-
servations exist for the underdetermined case [4,5]. In this paper,
we propose an approach using modal decomposition of the re-
ceived signals [3]. More precisely we propose to decompose the
signal into its various modes. The audio signals and more partic-
ularly the musical signals can be modeled by a sum of damped
sinusoids [6] and hence are well suited for our separation ap-
proach. We propose here to exploit this last property for thesep-
aration of audio sources by means of modal decomposition. To
start, we consider first the case of instantaneous mixtures,then
we treat the more challenging problem of convolutive mixtures
in the overdetermined case.

2. INSTANTANEOUS MIXTURE CASE

2.1. Data model and assumptions

The blind source separation model assumes the existence ofN
independent signalss1(t), . . . , sN (t) andM observationsx1(t),

. . . , xM (t) that represent the mixtures. These mixtures are sup-
posed linear and instantaneous, i.e.

xi(t) =

NX
j=1

aijsj(t) i = 1, . . . , M. (1)

This can be represented compactly by the mixing equation

x(t) = As(t) (2)

wheres(t)
def
= [s1(t), . . . , sN (t)]T is a N × 1 column vec-

tor collecting the source signals, vectorx(t) similarly collects

theM observed signals, and theM × N mixing matrixA
def
=

[a1, . . . , aN ] with ai = [a1i, . . . , aMi]
T contains the mixture

coefficients. We will suppose that for any pair(i, j) with i 6= j,
the vectorsai andaj are linearly independent.
The source signals are supposed to be decomposable in a sum of
modal componentscj

i (t), i.e:

si(t) =

liX
j=1

cj

i (t) t = 0, . . . , T − 1. (3)

The usual source independence assumption is replaced here by a
quasi-orthogonality assumption of the modal components, i.e.

〈cj
i |c

j′

i′
〉

‖cj
i‖‖c

j′

i′
‖
≈ 0 for (i, j) 6= (i′, j′) (4)

where

〈cj
i |c

j′

i′
〉

def
=

T−1X
t=0

cj
i (t)c

j′

i′
(t)∗ (5)

and
‖cj

i‖
2 = 〈cj

i |c
j
i 〉. (6)

In this work, the modal components are in fact damped sinusoids
and hence:

cj
i (t) = ℜ

n
αj

i z
j
i

t
o

(7)

whereαj
i represents the complex amplitude andzj

i = ed
j
i
+iω

j
i

is the pole wheredj
i is the negative damping factor andωj

i is the
angular-frequency.ℜ(·) represents the real part of a complex en-
tity. For the extraction of the modal components, we proposeto
use the ESPRIT-like (Estimation of Signal Parameters via Rota-
tion Invariance Technique) technique that estimates the poles of
the signals by exploiting the row-shifting invariance property of
the data Hankel matrix. We use Kung’s algorithm given in [3]1.

1Note that fast and efficient implementation of this algorithm exists
in [7].
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For the synthesis of the source signals one observes that, thanks
to the quasi-orthogonality assumption, one has:

〈x|cj

i 〉

‖cj
i‖

2

def
=

1

‖cj
i‖

2

264 〈x1|c
j

i 〉
...

〈xM |cj
i 〉

375 ≈ ai

whereai represents theith column vector ofA. We can then as-
sociate each estimated componentbcj

i to a space direction (vector
column ofA) that is estimated bybaj

i =
〈x|bcj

i 〉

‖bcj
i ‖

2

Two components of a same source signal are associated to the
same column vector ofA. Therefore, we propose to gather these
components by clustering the vectorsbaj

i into N classes2. One
will be able to rebuild the initial sources up to a constant by
adding the various components within a same class.

2.2. Parametric signal analysis

In this section we present an alternative solution for signal analy-
sis. For that, we represent the source signal and hence the obser-
vations as sum of damped sinusoids:

xk(t) = ℜ

(
LX

l=1

αl,kzt
l

)
(8)

whereαl,k represents the complex amplitude andzl = edl+iωl

is thelth pole wheredl is the negative damping factor andωl is
the angular-frequency.ℜ(·) represents the real part of a complex
entity.
For the extraction of the modal components, we propose to use
the ESPRIT-like (Estimation of Signal Parameters via Rotation
Invariance Technique) technique that estimates the poles of the
signals by exploiting the row-shifting invariance property of the

D×(T −D) data Hankel matrix[H(xk)]n1n2

def
= xk(n1+n2),

D being a window parameter chosen in the rangeT/3 ≤ D ≤
2T/3.
We use of Kung’s algorithm given in [3] that can be summarized
in the following steps:

1. Form the data Hankel matrixH(xk).

2. Estimate the2L-dimensional signal subspaceU(L) =
[u1 . . .u2L] of H(xk) by means of the SVD (u1 . . .u2L

are the principal left singular vectors ofH(xk)).

3. Solve (in the least squares sense) the shift invariance equa-
tion

U
(L)
↓ Ψ = U

(L)
↑ ⇔ Ψ = U

(L)#
↓ U

(L)
↑ (9)

whereΨ = Φ∆Φ−1, Φ being a non-singular2L × 2L
matrix and∆ = diag(z1, z

∗
1 , . . . , zL, z∗

L). ()# denotes
the pseudo-inversion operation and arrows↓ and↑ denote
respectively the last and the first row-deleting operator.

4. Estimate the poles as the eigenvalues of matrixΨ.

2There exist techniques that perform both the clustering andthe es-
timation of the number of classes. For simplicity, we assumed here the
number of sources known.

5. Estimate the complex amplitudes by solving the least squares
fitting criterion

min
α

‖xk − Zα‖2 ⇔ α = Z
#
xk (10)

wherexk = [xk(0) . . . xk(T − 1)]T is the observation
vector,Z is a Vandermonde matrix constructed from the
estimated poles andα is the vector of complex ampli-
tudes.

2.3. Signal synthesis using vector clustering

For the synthesis of the source signals one observes that thanks
to the quasi-orthogonality assumption, one has:

〈x|cj

i 〉

‖cj
i‖

2

def
=

1

‖cj
i‖

2

264 〈x1|c
j

i 〉
...

〈xM |cj
i 〉

375 ≈ ai

whereai represents theith column vector ofA. We can then
associate each componentbck

j to a space direction (vector column
of A) that is estimated bybak

j =
〈x|bck

j 〉

‖bck
j ‖

2

Two components of a same source signal are associated to the
same column vector ofA, Therefore, we propose to gather these
components by clustering the vectorsbak

j into N classes. One
will be able to rebuild the initial sources up to a constant by
adding the various components within a same class.

3. CONVOLUTIVE MIXTURE CASE

3.1. Data model and assumptions

The convolutive mixture case can be represented by:

x(t) =
LX

l=0

H(l)s(t − l) + w(t) (11)

whereH(l) are M × N matrices forl ∈ [0, L] representing
the impulse response coefficients of the channel. We considered
here only the overdetermined case (M > N ) and the polyno-

mial matrixH(z) =
LP

l=0

H(l)z−l is assumed to be irreducible

(i.e. H(z) is of full column rank for allz). The sources are
assumed, as in the instantaneous mixture case, to be decompos-
able in a sum of damped sinusoids satisfying approximately the
quasi-orthogonality assumption (4).
Knowing that the convolution preserves the different modesof
the signal, we can exploit this property to estimate the different
modal components of the source signal using the same approach
as in the instantaneous mixture case.

3.2. Signal synthesis step

Once the modal components of all source signals are estimated,
one needs to group them in such a way to reconstruct each of
the sources. Now this problem is more complex than in the in-
stantaneous mixture case as the correlation of one signal com-
ponentcj

i of the ith source signal with the observation leads
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to an estimate of the vectorhi(c
j
i )

def
=

LP
l=0

hi(l)(c
j
i )

−l where

H(l)
def
= [h1(l) . . .hN (l)].

Clearly,hi(c
j
i ) depends on both theith channel (associated to

the ith source signal) and on the pole of the considered modal
componentcj

i . Consequently, contrary to the instantaneous mix-

ture case, two componentscj
i andcj′

i of a same source signal do
not correspond to vectors of a same spatial direction. For this
reason, we propose another synthesis solution that exploits sub-
space orthogonality together with an appropriate sparsitymea-
sure.
Indeed, considering the data model in (11) and for a given ’large
enough’ window parameterw one has:

xw(t)
def
= [xT (t) . . . xT (t + w − 1)]T = Hsw(t) (12)

whereH is a block-Sylvester matrix of full column rank (see [8]
for more details) andsw(t) = [sT (t − L) . . . sT (t + w − 1)]T .
Hence, the data matrixXw = [xw(0) . . .xw(T − w)] is given
by

Xw = HSw (13)

This structure suggests to exploit the signal subspace method
[9] to characterize the source signals. More precisely, using the
SVD of Xw one can write (in the noiseless case)

Xw = U
�

Σ 0
� � VH

s

VH
n

�
(14)

whereVn is a basis of the orthogonal subspace toRange(SH
w ).

Hence,Vn satisfies
SwVn = 0 (15)

Using the block Hankel structure ofSw, one can transform the
above equality into

VnST = 0 (16)

whereST = [s(−L) . . . s(T − 1)]T andVn is a noise subspace
projection matrix constructed fromVn as shown in [9]. Using
the modal decomposition (3) of the sources, one can write

ST = CΛ (17)

whereC is the matrix whose column vectors correspond to the
modal componentscj

i = [cj

i (−L) . . . cj

i (T − 1)]T . Therefore
equation (16) becomes

VnCΛ = 0 (18)

In other wordsΛ belongs to the Kernel of

Q
def
= C

H
V

H
n VnC

Let P be a matrix whoseN column vectors form a basis of
Ker(Q). Then

Λ = PeΛ (19)

whereeΛ is an unknownN ×N matrix. This means that the sub-
space solution provides an instantaneous mixture of the sources.
To estimate the desired matrixeΛ, we propose to use a sparsity
criterion as shown next.

3.3. Sparsity based criterion

Let us observe that, under the data model assumption, each source
signalsi is a linear combination of a reduced numberli of the
modal components. In other words, the column vectors ofΛ

should be sparse in the sense that each of them is zero except for
a reduced number of entries.
Now, to get the appropriate matrixΛ, we exploit this property
and search for a non-singularN × N matrix eΛ such thatΛ is
sparse. To guarantee that all sources are extracted (i.e thenon-
singularity ofeΛ), we proceed as follows.
Without loss of generality assume that the sources are uncorre-
lated and of unit norm so that

1

T
S

H
T ST ≈ I (20)

Hence,
1

T
eΛH

P
H
C

H
CPeΛ ≈ I (21)

ThereforeeΛ can be estimated up to a unitary matrixU as the
inverse square root of

S =
1

T
P

H
C

H
CP (22)eΛ = S

− 1

2 U (23)

Now, to obtain the remaining unitary matrixU, we use the spar-
sity of Λ. We estimateU in such a way to minimize

‖Λ‖p = ‖PS
− 1

2 U‖p (24)

where‖ · ‖p represents theLp normp < 2 (in our simulation
we usedp = 1) which is know to be a good measure of spar-
sity [10].
To minimize (24) under unitary constraint, we decomposeU as
product of Givens rotation so that we minimize the criterioniter-
atively as in [11] where at each iteration only one scalar rotation
is optimized using a line search technique.

4. SIMULATION

We present first a simulation example in the instantaneous mix-
ture case that illustrates the performance of our blind separa-
tion algorithm. For that, we consider a uniform linear array
with M = 3 sensors receiving the signals fromN = 4 au-
dio sources. The angles of arrival of the sources are chosen
randomly. The sample size is set toT = 5000 samples. The
observed signals are corrupted by an additive white noise ofco-
varianceσ2I (σ2 being the noise power). The separation quality
is measured by the normalized mean squares estimation errors
(NMSE) of the sources evaluated over 100 Monte-Carlo runs.
The plots represent the averaged NMSE over theN sources. In
figure 1, we compare the separation performance obtained by
our algorithm using the parametric technique withli = 30 for
i = 1, . . . , N . As a reference, we plot also the NMSE obtained
by pseudo-inversion of matrixA (assumed exactly known). In
figure 2, we present a simulation example in the convolutive
mixture case that illustrates the performance of our blind sep-
aration algorithm. For that, we consider a uniform linear array
with M = 4 sensors receiving the signals fromN = 3 audio
sources in noiseless case. The filter coefficients are chosenran-
domly and the channel order isL = 3. The sample size is set
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Figure 1:NMSE versus SNR for 4 audio sources and 3 sensors
in instantaneous mixture case: comparison of the performance
of our algorithm with the pseudo-inversion of mixing matrixA

(assumed exactly known).

to T = 1500 samples. the upper line represents the original
source signals, the second line represents theM mixtures and
the bottom one represents estimates of sources by our algorithm.
We have observed in our simulation that the propose algorithm
is very sensitive to noise effect. Obtaining a robust solution is
still an open problem under investigation.
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Figure 2:Blind source separation example for 3 audio sources
and 4 sensors in convolutive mixture case: the upper line repre-
sents the original source signals, the second line represents the
M mixtures and the bottom one represents estimates of sources
by our algorithm.

5. CONCLUSION

This paper introduces a new blind separation method for audio-
type sources using modal decomposition. The proposed method
can separate more sources than sensors in the instantaneousmix-
tures case and provides, in that contest, a better separation qual-
ity than the one obtained by pseudo-inversion of the mixturema-
trix (even if it is known exactly). For the convolutive mixture
case we propose to use again modal decomposition but the sig-
nal synthesis is more complex and requires the use of subspace
projection in conjunction with an appropriate sparsity criterion.
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