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Figure 1: A traditional room impulse response identification
scheme fails in the undermodelling case.

Abstract
In several scenarios it is desired to obtain an estimate of only the
first part of the room impulse response, e.g. due to computing
power restrictions. Room impulse response estimation is also
often required in continuous doubletalk situations. In this paper
we show that the PEM-AFROW algorithm which has recently
been proposed for acoustic feedback cancellation, can be used
in these situations to provide a low variance estimate with only
a small bias.

1. INTRODUCTION

In this paper, we will focus on scenario’s in which it is desired to
provide an estimate of the first part (undermodelling) of a room
impulse response (RIR), while continuous double talk is present.
An example is an acoustic echo canceller followed by a post
processor which can remove the residual echo due to the last
part of the RIR (typically less energy).
Standard adaptive filtering algorithms will provide a biased and
large variance estimate of such a truncated impulse response. In
this paper we will show that the most important of both is the
large variance, and that by using the PEM-AFROW algorithm
[1, 2] which was derived in the context of acoustic feedback
cancellation, bias and variance can be reduced. In section 2 a
problem statement is given, and in section 3 the PEM-AFROW
based approach is introduced. Section 4 provides the simulation
results.

2. UNDERMODELLED ROOM IMPULSE RESPONSE

Figure 1 shows a room impulse identification scheme. We as-
sume that the RIRf ∈ RN varies slowly compared to the statis-
tics of the signals. We assume that the signals involved will be

speech signals, and it is known that they can be modelled as time
varying AR processes (TVAR). On the other hand, especially in
undermodelling scenario’s, speech segments which are station-
ary for a longer period than the length of the modelled part of the
impulse response may occur. Hence in the simulations, we use
both stationary and time variant AR-models. The near end signal
v(k) and the far end signals(k) are assumed to be independent.
In order to describe the undermodelling case, we define

f =

„
f1
f2

«
,

and we constrain

f̂ =

„
f̂1
0

«
with f1, f̂1 ∈ RM . The MMSE criterion which is solved in a
traditional echo canceller can then be specified as

min ε{(sT (k)

„„
f1
f2

«
−

„
f̂1
0

««
+ v(k))2} = (1)

min ε{(s1T (k)f1 + s2T (k)f2 − s1T (k)f̂1 + v(k))2}
with s1(k) a vector containing the firstL elements ofs(k), and
s2(k) the lastN − L. Define the Hankel-matrices

Si(k)
`

si(k)T . . . si(1)T
´T

i = 1, 2

. The microphone signal consists of the signalS1(k)f1(k), and
what could be described as ’noise’n(k) for the identification
process. The noise consists of the signalS2(k)f2(k) which has
a componentnb(k) in the column space ofS1(k), and a compo-
nentorthogonalto the column space ofS1(k). The sum of the
latter signal and the near end signalv(k) will be callednv(k),
and it will lead to variance on the estimatef̂1 of f1, while nb(k)
will lead to a bias on the estimate.

n(k) = (S2(k)f2(k))//| {z }
nb(k):Leads to bias

+ (S2(k)f2(k))⊥ + v(k)| {z }
nv(k):Leads to variance

The bias can be expressed by setting the derivative tof̂1 of (1) to
zero :

ε{ ∂

∂ f̂1
} = −2ε{s1(k)sT1 (k)f1 + s1(k)sT2 (k)f2 −

s1(k)sT1 (k)f̂1}+ ε{s1(k)v(k)| {z }
=0

} = 0

Now defineR11 = ε{s1(k)sT1 (k)}andR12 = ε{s1(k)sT2 (k)}.
We then have for the bias

f̂1 − f1 = R−1
11 R12f2. (2)

Note that the bias is zero whens(k) is white noise.
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Figure 2: PemAFROW applied for identification of an under-
modelled room impulse response.

3. PEM-AFROW BASED APPROACH

In Figure 2 the PEM-AFROW scheme applied to undermodelled
RIR identification is shown. The PEM-AFROW scheme [1, 2]
is a prediction error method [3], specifically applied to non-
stationary TVAR–signals under the assumption that the plant
(the room impulse response) changes slower than the statistics
of the signals. It can be used both in open loop [4, 5] and in
closed loop [1, 2]. For the simulations which we will perform in
this paper, we assume a near end noise signal

v(k) = a1(k)v(k − 1) + ... + aP (k)v(k − P ) + w(k),

with w(k) a white noise sequence, and similarly, a far end signal

s(k) = a′1(k)v(k − 1) + ... + a′P (k)v(k − P ) + w′(k).

Define

a(k) =
`

1 −a1(k) ... −aP (k)
´T

anda′(k) similarly. The coefficientsa(k) anda′(k) will either
be fixed, or changing every 20 msec. The PEM-AFROW algo-
rithm is based on an MSE cost function given as

min
â,f̂1

ε{
“
âT (k)

“
S1(k)

“
f1 − f̂1

”
+ S2(k)f2 + v(k)

””2

}.

In this criterium,â(k) andf̂1(k) are estimated in an alternating
fashion, and on a frame–by–frame basis. In a first step,f̂1(k)
is assumed ’correct’ and kept fixed, andâ(k) will be estimated
by linear prediction such that the residual energy is minimized
for a frame of data, in which the signals can be assumed to be
stationary (20 msec for speech). This means that linear predic-
tion is performed onthe combinationn(k) of the AR–process
v(k) and the ARMA-processS2(k)f2(k). In a second step, for
the same frame of data, the far end and the microphone signal
are prefiltered by the linear prediction error filterâ(k), and from
these prefiltered signals, the estimatef̂1(k) is updated.
It should be noted that in case of a white far end signals(k),
in which a conventional echo canceller in an undermodelling
setup would perform bias–free, inserting the prediction error fil-
ter â(k) of orderP , would lead to a biasQ−1

1 Q2f2, whereQ1

is a band–diagonal matrix with2P − 1 non–zero diagonals, and
Q2 a matrix with only non-zero elements on a triangle in the first

P columns and on the lastP rows. If the AR–models used are
stable,Q−1

1 can be approximated as a band–diagonal matrix too,
and the bias will mainly occur in the lastP elements of̂f1. Since
P is usually small compared toL, theseP elements can be dis-
carded. On the other hand, the structure of the scheme inFigure
2 allows forâ to form an inverse model for the AR–process gen-
erating the far end signal, and hence it can alsoreducethe bias.
In this setup,̂a will minimize the linear prediction error energy
of n(k), and its effect will depend on the relative energies of the
different components ofn(k).
The PEM-AFROW based method will — as we will show in sec-
tion 4 below — effectively reduce the variance on the estimate
f̂1(k), since the energy of the orthogonal partnv(k) of n(k) is
reduced after prefiltering in ’Step 2’.

4. SIMULATIONS

In the simulations, we use an artificial room impulse response
with 800 taps (as shown inFigure 3), and in each of the exper-
iments, only the first 250 taps of this impulse response will be
modelled. From the figure it is clear that a significant amount
of energy resides in tap 251 to 800, and (as will become clear in
the simulations) without precautions, estimates will be useless.
All experiments were performed with least squares identification
(batch solution of a least squares system), andnot with stochas-
tic gradient algorithms (NLMS). In NLMS–type algorithms the
variance on the estimate would seem larger because of the ex-
cess mismatch which occurs in these algorithms due to the pres-
ence of near end signals. This effectively means that the pro-
posed technique even provides a larger improvement on NLMS–
type algorithms than on the LS solutions in the simulations. For
the simulations, 500 trials were run, and then the bias and vari-
ance of the estimate of the modelled part of the room impulse
response was calculated. Instead of the variance, we plot the
square root of the variance (the standard deviation), because this
can directly be compared to the amplitude of the room impulse
response.
We first consider a stationary AR far end signal. While speech
is of course nonstationary, this scenario is relevant in case of
strong undermodelling (less than 20 msec of the impulse re-
sponse).Figure 4 shows a simulation where no near end signal
is present. In the upper figure the square root of the variance
(standard deviation) and the bias on the estimate of the first 250
taps are shown when direct identification (DI) is applied by solv-
ing a least squares system, and in the lower figure the result is
shown when PEM-AFROW is applied. Without PEM-AFROW
the standard deviation is about 0.5, to be compared to the am-
plitude of the room impulse response, which peaks to only 0.3,
seeFigure 3). The bias is concentrated in the last taps of the
modelled part of the room impulse response, because due to the
(stable) AR–process for the far end signal, the unmodelled part
is less correlated with the new process samples than with the
(older) process samples which correspond to the last taps of the
modelled part. When PEM-AFROW is applied (lower part of
the figure), the standard deviation drops spectacularly to 0.01,
and the bias is lowered, but still concentrated in the last taps.
This is an interesting result, since these last taps can easily be
discarded.
In Figure 5, a stationary near end signal is added. The energy
of the stimulus of this signal,w(k) is chosen from an uniform
random distribution between -5dB and 0 dB compared to the en-
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Figure 3: The room impulse response (800 taps) of which only
250 taps are modelled in the experiments.

ergy of the stimulusw′(k) of the far end signal. Similar results
are obtained : the bias is (both with and without application of
PEM-AFROW) negligible compared to the variance, and con-
centrated around the last taps of the modelled part. The variance
drops because the linear prediction error filter reduces the energy
in the uncorrelated part of the microphone signal.
In Figure 6, the simulation is repeated for a time variant AR
(TVAR) signal for the far end. The AR-coefficients are cho-
sen randomly with a pole radius of 0.83, and kept stationary
for about 20 msec (as in speech). In this experiment, no near
end signal is added, and only the undermodelling performance
is evaluated.
In Figure 7, the approach is validated on a real speech signal,
with a real time implementation using NLMS adaptive filters.
The impulse response was measured independently in silence in
order to have a reference. The first 1000 taps of the 5000 taps
impulse response are modelled and shown, together with their
estimate performed by an NLMS adaptive filter (upper plot) and
by PEM-AFROW with NLMS as its adaptive filter (lower plot)
(contrarily to the experiments above, the plot only shows one
realisation). The estimate by the PEM-AFROW with NLMS al-
gorithm is observed to be much better than the estimate provided
by NLMS (direct identification). This is most easily observed in
the first 500 taps where the impulse response is zero.

5. CONCLUSION

We have experimentally shown that the PEM-AFROW algorithm
can be used to provide estimates of an undermodelled room im-
pulse response with both a low variance and a bias which is con-
centrated in a few filter taps, which can easily be discarded.
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Figure 4: Stationary AR far end, no near end. Upper : direct
identification (DI), lower : PEM-AFROW
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Figure 5: Stationary AR far end and near end. Upper : DI, lower
: PEM-AFROW
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Figure 6: TVAR far end, no near-end. Upper : DI, lower : PEM-
AFROW.

Figure 7: Upper : undermodelled (1000 out of 5000 taps) iden-
tification with NLMS. Lower : with PEM-AFROW.
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