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ABSTRACT

The sensitivity against outliers due to undetected noise bursts
often limits the performance of adaptive filters in applications
where especially fast convergence is required, as, for example, in
adaptive beamforming for audio signal acquisition or in acoustic
echo cancellation. In this paper, we analyze the problem of out-
liers for a robust generalized sidelobe canceler (RGSC) in the
discrete Fourier transform (DFT) domain and show by experi-
mental results how outlier-robust adaptive filtering for bin-wise
double-talk detectors improves the performance of the RGSC.

1. INTRODUCTION

The choice of an adaptive filter for applications such as acoustic
echo cancellation or adaptive beamforming is mostly determined
by the convergence speed, the tracking capability, the computa-
tional complexity, and the delay. Additionally, for echo cancella-
tion, in [1], robustness against undetected double-talk bursts due
to the presence of local sources was pointed out and addressed
by using a non-linear function of the error signal for the adapta-
tion. In [2, 3, 4, 5, 6], robustness against undetected double-talk
(‘outliers’) is obtained by deriving adaptive filters from outlier-
robust optimization criteria [7].
In recent years, discrete Fourier transform (DFT) domain adap-
tive algorithms (‘frequency-domain adaptive filters’ (FDAFs))
have become very attractive since they combine fast convergence
with low computational complexity [8]. DFT-domain realiza-
tions of acoustic echo cancellers also allow for a DFT-bin-wise
adaptation. This is especially advantageous for signals which are
sparse in the time-frequency domain, since the stepsize of the
adaptive algorithm can be adjusted for each DFT-bin individu-
ally. This leads to a more frequent adaptation and faster conver-
gence of the adaptive filter [9]. To improve the robustness of this
class of algorithm, a robust DFT-domain adaptive filter based on
robust statistics and a non-linear least-squares error (LSE) crite-
rion is derived and applied to acoustic echo cancellation in [5].
However, due to the time-domain optimization criterion, [5] can-
not be used in combination with a DFT-bin-wise stepsize con-
trol. Therefore, in [10], an outlier-robust DFT-domain adaptive
filter for multi-channel systems (‘multi-channel bin-wise robust
FDAF’, MC-BRFDAF) is derived based on a cost function in the
DFT domain so that DFT bin-wise stepsize controls can be used
for outlier-robust algorithms. The efficiency of the approach was
verified by applying the MC-BRFDAF to adaptive beamform-
ing for multi-channel speech enhancement with microphone ar-

rays using a DFT-domain robust generalized sidelobe canceller
(RGSC) [11].
In this paper, we statistically analyze the outlier problem of the
RGSC and illustrate the performance improvement of the RGSC
which is obtained by using MC-BRFDAF instead of MC-FDAF.
In Sect. 2, we describe the motivation for using outlier-robust
adaptive filters for the RGSC by statistically analyzing the adap-
tation control of the RGSC. In Sect. 3, we summarize the deriva-
tion of MC-BRFDAF starting with outlier-robust maximum like-
lihood estimation. In Sect. 4, the MC-BRFDAF is applied to the
RGSC and experimental results are reported.
We use the following conventions: Upper case and lower case
bold font denote matrix and vector quantities, respectively. Un-
derlined quantities denote DFT-domain variables,N is the num-
ber of filter taps of an adaptive filter.n is the frequency index,
and2N is the DFT size.k is the discrete time index, andr is the
block time index.R is the block shift in samples.r is related to
k by k = rR.

2. ROBUST GENERALIZED SIDELOBE CANCELLER
(RGSC) WITH DFT-BIN-WISE DOUBLE-TALK

DETECTION

The RGSC, consisting of a fixed beamformer, the adaptive block-
ing matrix (BM) B(r) after [12] and an interference canceller
(IC) a(r) is depicted in Fig. 1. As pointed out in [12], the block-
ing matrix should be adapted when only the desired signal is
present, while the interference canceller should be adapted when
only interference is present to prevent instability of the adaptive
filters and cancellation of the desired signal. For optimally track-
ing the time-variance of the sensor signals, the sparseness of the
sensor signals in the DFT domain may be exploited, which re-
quires (1) a DFT bin-wise classifier for ‘desired signal only’,
‘interference only’, and ‘double-talk’ between the desired signal
and interference, and (2) DFT-domain adaptive filters for adapt-
ing B(r) anda(r).

2.1. Bin-Wise Double-Talk Detection

A DFT bin-wise classifier for ‘desired signal only’, ‘interference
only’, and ‘double-talk’ is presented in [13]. The classifier ex-
ploits the directivity of a fixed beamformer which is steered to
the position of the desired source. It is thus assumed that the po-
sition of the desired source is roughly known, as, for example, in
scenarios where the microphone array is mounted on a computer
screen.
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Figure 1: RGSC with an adaptive blocking matrix after [12].
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Figure 2: (a) Histogram ofSIRn(r) averaged over frequencyn
and over block timer: ‘SIR’ for all samples, ‘BM’ for samples
for which the blocking matrix is adapted, and ‘IC’ for samples
for which the interference canceller is adapted. (b) Histogram
of the real part ofzn(r) = zd,n(r) + zi,n(r), of zd,n(r), and
of zi,n(r) for samples for which the interference canceller is
adapted; Speech signals for the desired signalzd,n(r) and for
the interferencezi,n(r).

A statistical analysis of this classifier is depicted in Fig. 2. In
Fig. 2a, the histograms of the signal-to-interference ratio (SIR)
for which the classifier detects ‘desired signal only’ (gray line)
and ‘interference only’ (black line) along with the histogram of
the SIR at the sensors (gray shaded surface) are shown. The
histograms are averaged over DFT binsn and block-timer for
two competing speech signals of length20 s with averageSIR =
3 dB. It may be seen that – although the centers of the histograms
for ‘desired signal only’ and ‘interference only’ are located at
high SIRn(r) = 20 dB and at lowSIRn(r) = −5 dB, re-
spectively – the variances of the histograms cannot be neglected
and ‘desired signal only’ and ‘interference only’ are wrongly de-
tected for lowSIRn(r) and highSIRn(r), respectively.
These wrong detections lead to the adaptation of the blocking
matrix and of the interference canceller during the presence of
interference and desired signal, respectively, which should be
avoided to prevent instabilities and cancellation of the desired
signal.
As an example, in Fig. 2b, the distribution of the outliers for the
adaptation of the interference canceller is illustrated: The his-
togram (gray shading) of the real part of the DFT coefficients
zn(r) = zd,n(r) + zi,n(r) of the RGSC output, wherezd,n(r)
andzi,n(r) are the DFT coefficients of the desired signal and
of the interference, respectively, are depicted for the samples for

which the interference canceller is adapted. The histograms of
Re{zd,n(r)} (gray line) and ofRe{zi,n(r)} (black line) corre-
spond to the outliers and to the undisturbed data, respectively.
When adaptingB(r) and a(r) by a conventional non-robust
adaptation algorithm, instability is avoided by using small adap-
tation stepsizes and accepting in turn a slower convergence of the
adaptive filters. To prevent instability while assuring fast conver-
gence of the adaptive filters, we apply outlier-robust adaptive fil-
ters which are based on outlier-robust maximum likelihood (ML)
estimation [7].

3. DOUBLE-TALK RESILIENT DFT-DOMAIN
ADAPTIVE FILTER

In outlier-robust ML estimation, the outliers are assumed to have
a distributionD which belongs to some given parametric family
D. The estimator is designed to obtain the best signal recon-
struction for the least favorable outlier distribution within the
given parametric family. Huber defines anǫ-contaminated nor-
mally distributed data setPǫ as [7]

Pǫ = {(1 − ǫ)Φ + ǫD : D ∈ D} , (1)

whereΦ is the normal distribution with zero mean and unity
variance,D is the set of all distributions symmetric to the origin,
andǫ ∈ [0, 1] is the outlier probability.
Note that two aspects need to be considered when applying the
contaminated modelPǫ to DFT coefficients of speech as, for ex-
ample, in Fig. 2b: (a) The Gaussian distributionΦ only roughly
approximates the true distribution of the speech signalzi,n(r),
which may be modeled more accurately by a Laplacian distri-
bution, and (b) the density of the sum of independent random
variableszn(r) = zd,n(r) + zi,n(r) should rather be modeled
by the convolution of densities than by the sum of densities as in
(1).
In [7] it is shown that the least favorable distribution inPǫ, in
the sense that the asymptotic variance is maximized, is given by

p(z) =
(1 − ǫ)√

2π
exp{−ρ(|z|)} , (2)

ρ(|z|) =

(

z2

2
for |z| ≤ k0 ,

k0|z| − k2

0

2
for |z| > k0 ,

(3)

where the constantk0 depends onǫ and is chosen such that
R

∞

−∞
pH(z)dz = 1. It may be seen that the least favorable dis-

tribution is Gaussian in the center and Laplacian in the tails. The
transition depends onǫ and decreases with increasingǫ.
Interpretingz as the error signalen(r) of an optimum linear fil-
terw(r), anM -estimator (or maximum likelihood type estima-
tor) [7] of w(r) can be derived by minimizing the cost function

ξ(r) =

2N−1
X

n=0

− log p

„ |en(r)|
sn(r)

«

(4)

w.r.t. w(r), or, equivalently,

ξ(r) =

2N−1
X

n=0

ρ

„ |en(r)|
sn(r)

«

. (5)

The scale factorsn(r) normalizes the variance of the argument
of ρ(·), as required in (1). For|en(r)|/sn(r) ≤ k0, Eq. (5)
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corresponds to an LSE criterion with a quadratic cost function,
while (5) is a 1-norm criterion for|en(r)|/sn(r) > k0. For
|en(r)|/sn(r) > k0, which very likely corresponds to outliers,
the gradient ofξ(r) is limited so that the robustness against out-
liers is increased.
Equation (5) can be solved by an iterative Newton algorithm [14]
of the form

w(r) = w(r − 1) − µ(r)Λ−1(r)∇ξ(r) . (6)

∇ξ(r) = 2∂ξ(r)/∂w
∗(r) is the gradient of the cost function

ξ(r) w.r.t. w(r). Λ(r) = E{∇2ξ(r)} = 4E{∂2ξ(r)/∂2
w

∗(r)}
is the expected value of the Hessian ofξ(r) w.r.t. w(r). µ(r)
is a diagonal matrix of size2N × 2N with stepsizesµn(r),
n = 0, 1, . . . , 2N−1, on the main diagonal for controling sep-
arately the adaptation in the frequency bins. The DFT-domain
Newton step (6) is analogous to the Newton step in the discrete
time domain in [4] and an extension of the DFT-domain Newton
step in [5] to a bin-wise operation. The derivation of the adap-
tation algorithm (MC-BRFDAF) based on the Newton step (6)
can be found in [10].
To estimate the scale parametersn(r), we use the outlier-robust
M -estimator for scale as presented in [2, 3].

4. EXPERIMENTAL RESULTS

We apply the MC-BRFDAF to the adaptation of the blocking
matrix and of the interference canceller of the RGSC and com-
pare the performance with the RGSC using MC-FDAFs. The
bin-wise scale parametersn(r) is replaced by a bin-independent
scale parameters(r) since the dependency on DFT bins did not
improve the performance relative to a bin-independent estima-
tion in our experiments. The fixed beamformer is realized by a
simple uniformly-weighted delay & sum beamformer.

4.1. Transient Behavior

In a first experiment, we study the transient behavior of RGSC
for a car environment withT60 = 50 ms with presence of car
noise. The transient behavior of the RGSC for an office envi-
ronment withT60 = 250 ms and an interfering speech signal
is illustrated in [10]. The performance improvement by MC-
BRFDAF for interfering speech is greater than for interfering
car noise. (See also Sect. 4.2.)
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Figure 3: Comparison of the RGSC using MC-FDAF and MC-
BRFDAF for ‘continuous’ double-talk:(a) Desired signald(k)
and(b) interferencei(k) at one microphone.

A microphone array with12-cm aperture andM = 4 micro-
phones is mounted on the sun visor in the passenger cabin of a
car. The desired signal (Fig.3a) arrives from the broadside di-
rection from a distance of60 cm. The car noise is depicted in

Fig.3b. The average SIR at the sensors is6 dB. The frequency
range is200 Hz–6 kHz. The parameters are optimized individu-
ally for MC-BRFDAF and for MC-FDAF for maximum conver-
gence speed and maximum noise-suppression after convergence.
They are the same for both GSC realizations except for the con-
stant stepsize parameterµc, which is used during adaptation of
the adaptive filters. (See Fig. 4.)
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Figure 4: Comparison of the RGSC using MC-FDAF and MC-
BRFDAF for ‘continuous’ double-talk:(a) suppression of the
desired signalTRBM(k) by the blocking matrix,(b) suppres-
sion of the interferenceIR(k) by the RGSC and by the fixed
beamformer (FBF), and(c) distortion of the desired signal mea-
sured by the segmental SNRSSNR(k) between the FBF output
and the RGSC output for data blocks of length512. (Sampling
rate12 kHz, N = 256, R = 64, forgetting factor for recur-
sively averaging power spectral densitiesλ = 0.97, k0 = 1.0,
MC-FDAF: µc = [0.7, 0.2] · (1 − λ) [BM,IC], MC-BRFDAF:
µc = [1.3, 1.0] · (1 − λ) [BM,IC])

Figures 4a–c show the suppressionTRBM(k) of the desired sig-
nal by the blocking matrix, the interference suppressionIR(k)
of the GSC, and the distortionSSNR(k) of the desired signal by
the RGSC as a function of time after initialization of the system,
respectively.SSNR(k) is the segmental SNR between the out-
put of the fixed beamformer and the output of the GSC for the de-
sired signal alone with accounting for the delay between the two
outputs. Ideally,SSNR(k) = ∞ since the interference canceller
should not distort the desired signal. It may be seen that the
blocking matrix (Fig. 3a) and the interference canceller (Fig. 3b)
converge faster for MC-BRFDAF than for MC-FDAF, since a
larger stepsize can be chosen for MC-BRFDAF due to the im-
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proved robustness against double-talk. In this setup,TRBM(k)
andIR(k) converge for both RGSCs to nearly the same value.
One may expect that the larger stepsizes for MC-BRFDAF rel-
ative to MC-FDAF may lead to reducedTRBM(k) andIR(k)
after the adaptive filters have reached a steady state. However,
due to the dependency of the adaptive filter coefficients on the
time-varying spectra of the input signals for this type of inter-
ference cancellation problem [11], a larger step size may yield a
comparable or even improved steady-state performance because
of the faster convergence. TheSSNR(k) (Fig. 3c) is lower for
MC-BRFDAF than for MC-FDAF. However, for both adaptation
algorithmsSSNR(k) is large (> 20 dB) so that the distortion is
negligible for many applications.

4.2. Steady-State Performance

The interference suppression of the RGSC after convergence of
the adaptive filters as a function of the SIR at the sensors is de-
picted for the office environment withT60 = 250 ms in Fig. 5a
and for the car environment in Fig. 5b. The experimental setup is
the same as in Sect. 4.1. In the office, an interfering male speaker
is located at90 degrees off the target. ‘Fixed scaling’ and ‘adap-
tive scaling’ stand for time-invariant scalings(r) optimized for
SIR = 6 dB and time-varying scaling using the outlier-robust
estimator, respectively. The comparison between ‘adaptive scal-
ing’ and ‘fixed scaling’ illustrates the necessity of scale parame-
ter estimation.
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Figure 5: Interference suppressionIR after ‘convergence’ of the
IC as a function of the time-averagedSIR for (a) competing
speech in an office and (b) car noise in the passenger cabin of
a car.

It can be seen that the adaptation of the RGSC by MC-BRFDAF
(‘adaptive scaling’) outperforms MC-FDAF for allSIR. The
IR increases with increasing SIR for both environments. For
the office environment with competing speech (Fig. 5a), more
than4-dB improvement is obtained for the entire range ofSIR.
For car noise (Fig. 5b) and lowSIR < 0 dB, the advantage of
MC-BRFDAF relative to MC-FDAF is neglibible. This results
from the difficulty of the adaptation control to detect ‘interfer-
ence only’ in slowly time-varying diffuse noise fields. The can-
cellation of the desired signal by the blocking matrixTRBM is
not reported for this experiment since, forTRBM, the differ-
ence between MC-BRFDAF and MC-FDAF is negligible after
convergence of the adaptive filters, as shown by the results in
Sect. 4.1.

5. CONCLUSION

We analyzed the problem of outliers for the RGSC and showed
how the MC-BRFDAF can be used to resolve this problem. Ex-

perimental results show that both the transient behavior and the
steady-state performance of the RGSC can be significantly im-
proved by using MC-BRFDAF instead of MC-FDAF.
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