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ABSTRACT

The paper extends the use of multichannel filtered-x affine pro-
jection algorithms suitable for feed-forward active noise control
to a broad class of nonlinear filter structures, which comprises
also Volterra filters and Functional Link Artificial Neural Net-
works (FLANN). An analysis of the transient and steady-state
behavior of the resulting algorithms is provided. Some exper-
imental results that compare multichannel filtered-x affine pro-
jection algorithms for Volterra filters and for FLANN are dis-
cussed.

1. INTRODUCTION

The problem of nonlinear active noise control has recently
attracted the attention of many researchers. While most of
active noise control systems applied in practice are lin-
ear, in the last years it has been recognized that nonlin-
ear effects can affect actual applications [1, 2, 3]. Such
effects may arise from the behavior of the noise source
which rather than a stochastic process may be depicted
as a nonlinear deterministic noise process, sometimes of
chaotic nature. Moreover, the acoustic paths may exhibit
a nonlinear behavior thus motivating the use of a nonlin-
ear controller. Different nonlinear filter structures have
been proposed in the literature to cope with these nonlin-
earities. The first nonlinear active noise control structures
were based on multilayer neural networks [1], but very
soon Volterra filters were also adopted [2, 3] and they were
subsequently used in many contributions. More recently,
Functional Link Artificial Neural Network (FLANN) were
proposed by Das e Panda in [4] as an alternative to Volterra
filters. Like the Volterra filters, the output of a FLANN
structure depends linearly from the filter coefficients, but
the terms multiplied by these coefficients, rather than prod-
uct of input samples, are nonlinear functions of these sam-
ples. In [4] it was also shown that FLANN employing
trigonometric functional expansion and adapted with a fil-
tered-x LMS algorithm can provide similar or better be-
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havior than Volterra filters adapted with an equivalent adap-
tation algorithm.
More recently, different singlechannel and multichannel
filtered-x affine projection (AP) algorithms suitable for
feedforward active noise control employing both linear
and Volterra filters have been studied [5, 6]. The transient
and steady-state behavior of these algorithms were ana-
lyzed in [7] and [8]. In this paper, we first show that sin-
glechannel and multichannel filtered-x affine projection
algorithms can also be used for the adaptation of FLANN
structures and of all filters whose output depend linearly
from the filter coefficients. Then the analysis technique
developed in [7] and [8] is applied and the transient and
steady-state behavior of the resulting algorithms is dis-
cussed. Eventually, some experimental results that com-
pare multichannel filtered-x affine projection algorithms
for Volterra filters and for FLANN are discussed.

2. FILTERED-X AP ALGORITHMS

The general scheme of a multichannel feed-forward ac-
tive noise controller is shown in Figure 1 in the form of the
so-called delay-compensation scheme adopted throughout
the paper. It is assumed here that a perfect model of the
secondary paths is available, i. e. s̃k,j(z) = sk,j(z), but
this limitation can be easily removed by following the
same methodology of [8]. In this paper the j-th actuator
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Figure 1: Delay-compensated filtered-x structure for active
noise control.
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output is modeled as

yj(n) =
I∑

i=1

xT
i (n)wj,i(n), (1)

where wj,i(n) is the coefficient vector of the filter con-
necting the input i to the output j of the adaptive con-
troller, and xi(n) is the i-th primary source input signal
vector. In our approach xi(n) is expressed as a vector
function of the signal samples xi(n) whose general form
is given by

xi(n) =
[
f1

[
xi(n)

]
, f2

[
xi(n)

]
, . . . , fN

[
xi(n)

]]T
, (2)

where fi[·], for any i = 1 . . . N , is a time invariant func-
tional of its argument. Equations (1) and (2) include linear
filters, truncated Volterra filters of any order p and other
nonlinear functionals as the FLANN structure of [4]. As
an example, xi(n) for FLANN employing trigonometric
functional expansion with memory length Ni and finite
order Pi is given by

xi(n) =
[
xi(n), xi(n − 1), . . . , xi(n − Ni + 1),

sin[πxi(n)], . . . , sin[πxi(n − Ni + 1)],
cos[πxi(n)], . . . , cos[πxi(n − Ni + 1)], . . .
sin[Piπxi(n)], . . . , sin[Piπxi(n − Ni + 1)],

cos[Piπxi(n)], . . . , cos[Piπxi(n − Ni + 1)]
]T

.(3)

To introduce the filtered-x AP algorithms the following
notations are used:
I is the number of primary source signals,
J is the number of secondary source signals,
K is the number of error sensors,
L is the affine projection order,
N is the number of elements of vectors xi(n) and wj,i(n),
M = N · I · J is the number of coefficients of w(n),
sk,j(n) is the impulse response of the secondary path con-
necting the j-th secondary source to the k-th error sensor,
xi(n) is the i-th primary source input signal vector,

x(n) =
[
xT

1 (n), . . . ,xT
I (n)

]T
, is the full primary source

input signal vector,
wj,i(n) is the coefficient vector of the filter connecting the
input i to the output j of the controller,
wj(n) =

[
wT

j,1(n), . . . ,wT
j,I(n)]T is the aggregate of the

coefficient vectors at the output j of the controller,
w(n) =

[
wT

1 (n), . . . ,wT
I (n)]T is the full coefficient vec-

tor of the controller,
yj(n) = wT

j (n)x(n) is the j-th secondary source signal,
dk(n) is the output of the k-th primary path,

dk(n) =
[
dk(n), . . . , dk(n−L+1)

]T
is the vector of the

L past outputs of the k-th primary path,

d(n) =
[
dT

1 (n), . . . ,dT
K(n)

]T
is the full vector of the L

past outputs of the primary paths,
uk,j(n) = sk,j(n)�x(n) is the filtered-x vector obtained

by filtering, sample by sample, x(n) with sk,j(n),
uk(n) =

[
uT

k,1(n), . . . ,uT
k,J (n)]T is the aggregate of the

filtered-x vectors associated with the output k,
Uk(n) =

[
uk(n),uk(n − 1), . . . ,uk(n − L + 1)] is the

matrix constituted by the last L filtered-x vectors uk(n),
U(n) =

[
U1(n), . . . ,UK(n)] is the full matrix of filtered-

x vectors,
ek(n) = dk(n) +

∑J
j=1 sk,j(n) � yj(n) is the k-th error

sensor signal,
I indicates an identity matrix of appropriate dimensions,
� denotes the linear convolution,
vec{·} indicates the vector operator,
vec−1{·} is the inverse vector operator,
diag{. . .} is a block-diagonal matrix of the entries {. . .},
⊗ denotes the Kronecker product.
In this paper we apply to the class of filters described by
(1) and (2) the exact AP algorithm and an approximate AP
algorithm introduced in [7] for linear filters. The adapta-
tion rules of the two algorithms can be put in the same
form as follows

w(n + 1) = w(n) − μU(n)e(n), (4)

where μ is a diagonal step-size matrix and the matrix
U(n) is defined according to equations (5) and (6) in case
of the exact and the approximate algorithms respectively,

U(n) = U(n)
[
UT (n)U(n) + δI

]−1
, (5)

U(n) = U(n) · diag
{[

UT
1 (n)U1(n) + δI

]−1
, . . .

. . . ,
[
UT

K(n)UK(n) + δI
]−1

}
, (6)

where δ is a small positive constant. Note that in the sin-
glechannel case, where I = J = K = 1, the adaptation
equation of (4) and (6) reduces to the adaptation rule of
the exact AP algorithm given by (4) and (5).
In [7] we have shown that in the case of linear filters the
AP algorithms in (4) do not converge to the minimum-
mean-square (MMS) solution of the ANC problem but to
the asymptotic coefficient vector given by

w∞ = −E
[
P(n)

]−1
E

[
U(n)d(n)

]
. (7)

with P(n) = U(n) ·UT (n). The same conclusions apply
when we adapt with the filtered-x AP algorithms the filters
described by equations (1) and (2).

3. TRANSIENT AND STEADY-STATE ANALYSIS

The aim of the transient and steady-state analysis is to
study the time evolution of the expectation of the weighted
Euclidean norm of the coefficient vector E

[‖w(n)‖2
Σ

]
=

w(n)T Σw(n) for some choices of the symmetric positive
definite matrix Σ [9].
By applying the approach of [9], the following result that
describes the transient behavior of the AP algorithms was
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proved in [8]. This result holds for the whole class of
filters described by (1) and (2).

Theorem 1 Under the assumption that w(n) is uncorre-
lated with P(n) and with qΣ(n) =

(
I − PT (n)μ

)
Σ ·

·μU(n)d(n), the transient behavior of the filtered-x AP
algorithms with updating rule given by (4) is described by
the state recursions

E [w(n + 1)] = ME [w(n)] − E
[
μU(n)d(n)

]
and W(n + 1) = F W(n) + Y(n),

where M = E [(I − μP(n))] ,

F =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−p0 −p1 −p2 . . . −pM2−1

⎤
⎥⎥⎥⎥⎥⎦ ,

W(n) =

⎡
⎢⎢⎢⎣

E[‖w(n)‖vec−1{σ}
E[‖w(n)‖vec−1{Fσ}

...
E[‖w(n)‖vec−1{FM2−1σ}

⎤
⎥⎥⎥⎦,

Y(n) =

⎡
⎢⎢⎢⎣

(
γT + 2E[wT (n)]Q

)
σ(

γT + 2E[wT (n)]Q
)
Fσ

...(
γT + 2E[wT (n)]Q

)
FM2−1σ

⎤
⎥⎥⎥⎦,

F is the M2 × M2 matrix defined by

F = E
[(

I − PT (n)μ
) ⊗ (

I − PT (n)μ
)]

,

Q is the M × M2 matrix given by

Q = E
[(

μU(n)d(n)
)T ⊗ (

I − PT (n)μ
)]

,

the M2 × 1 vector γ is

γ = vec
{

E
[
μU(n)d(n)dT (n)U

T
(n)μ

]}
,

the pi are the coefficients of the characteristic polynomial
of F, i. e. p(x) = xM2

+pM2−1x
M2−1+. . .+p1x+p0 =

det(xI − F), and σ = vec{Σ}.

According to Theorem 1, the transient behavior of the fil-
tered-x AP algorithms is described by the cascade of two
linear systems, with system matrices M and F , respec-
tively. The stability in the mean sense and mean-square
sense can be deduced by the stability properties of these
two linear systems. Indeed, the filtered-x AP algorithm
will converge in the mean for any step-size matrix μ such
that |λmax (M) | < 1. The algorithm will converge in the
mean-square sense if, in addition, |λmax (F) | < 1.
With the steady-state analysis we are interested in eval-
uating the mean-square-deviation (MSD) and the mean-
square-error (MSE) at steady-state, which are defined by
equations (8) and (9), respectively,

MSD = lim
n→+∞E

[‖w(n) − w∞‖2
]

= lim
n→+∞E

[
wT (n)w(n)

] − ‖w∞‖2, (8)

MSE = lim
n→+∞E

[
K∑

k=1

e2
k(n)

]
. (9)

In the hypothesis that w(n) is independent from
K∑

k=1

uk(n)uT
k (n) and from

K∑
k=1

dk(n)uk(n), the MSE can

be expressed as

MSE = Sd + 2RT
udw∞ + lim

n→+∞E
[
wT (n)Ruuw(n)

]
,

(10)

where Sd=E

[
K∑

k=1

d2
k(n)

]
, Ruu=E

[
K∑

k=1

uk(n)uT
k (n)

]

and Rud=E

[
K∑

k=1

uk(n)dk(n)

]
.

The computations in (8) and (10) require the evaluation
of lim

n→+∞E [‖w(n)‖Σ] , where Σ = I in (8) and Σ =

Ruu in (10). This limit can be estimated with the same
methodology of [9] and thus the following expressions for
the MSD and MSE are obtained

MSD=
(
γT − 2wT

∞Q
)
(I − F)−1 vec{I} − ‖w∞‖2,(11)

MSE=Sd + 2RT
udw∞ +(

γT − 2wT
∞Q

)
(I − F)−1 vec{Ruu}. (12)

4. EXPERIMENTAL RESULTS

In this section we provide a few experimental results that
compare filtered-x AP algorithms for FLANN and Volterra
filters. We consider a multichannel active noise controller
with I = 1, J = 2, K = 2. The transfer functions of the
primary paths are given by

p1,1(z) = 1.0z−2 − 0.3z−3 + 0.2z−4,
p2,1(z) = 1.0z−2 − 0.2z−3 + 0.1z−4.

and the transfer functions of the secondary paths are
s1,1(z) = 1.0z−2 + 1.5z−3 − 1.0z−4,
s1,2(z) = 1.0z−2 + 1.3z−3 − 1.0z−4,
s2,1(z) = 1.0z−2 + 1.3z−3 − 1.0z−4,
s2,2(z) = 1.0z−2 + 1.2z−3 − 1.0z−4.

The input signal is the normalized logistic noise, which
has been generated by scaling the signal ξ(n) obtained
from the logistic recursion ξ(n + 1) = λξ(n)(1 − ξ(n)),
with λ = 4 and ξ(0) = 0.9, and by adding a white
Gaussian noise to get a 30 dB SNR. The controller is ei-
ther a two-channel FLANN structure with memory length
N=5 and order P=1 or a two-channel second-order Volterra
filter with memory length N=5 for the linear and quadratic
parts and two diagonals for the quadratic kernel. There-
fore, the two controllers have the same memory length and
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Table 1: First five coefficients of the MMS solution and of
the asymptotic solutions.

FLANN Volterra
wo w∞,e w∞,a wo w∞,e w∞,a

7.79 1.08 8.06 -3.54 2.54 -0.63
-5.16 -0.90 -4.84 -19.21 -0.92 -17.34
-0.43 0.31 -0.54 12.03 0.47 4.93
-1.63 0.28 -1.92 -6.65 0.11 -3.22
0.01 0.07 -0.07 3.62 0.17 2.27

15 and 14 coefficients per channel, respectively. More-
over, a zero mean, white Gaussian noise is added to the
error microphone signals dk(n) to get a 40 dB SNR, the
parameter δ is set to 0.001 and the same step-size is used
for all the filter coefficients.
Table 1 compares the MMS solution (wo) and the asymp-
totic solution of the exact (w∞,e) and approximate (w∞,a)
filtered-x AP algorithms with an AP order L=2 for
FLANN and Volterra filters. The exact AP algorithm al-
ways provides a very biased estimate of the MMS solu-
tion. On the contrary, the approximate algorithm obtains
a better estimation of the MMS coefficient vector. In all
our experiments, even the simplest FLANN structure with
P=1 always provided bias, steady-state MSE and MSD
lower than those of second-order Volterra filters. For ex-
ample, Figure 2 diagrams for FLANN and Volterra filters
the MSE of the exact and approximate filtered-x AP al-
gorithms, estimated with (12) or obtained from simula-
tions with time averages over 1 billion samples, at differ-
ent values of step-size μ and with AP order L=1, 2 and 3.
It is apparent that the approximate AP algorithm outper-
forms the exact algorithm in terms of residual error but we
must point out that it provides also a slower convergence
speed. Indeed, Figure 3 diagrams the learning curves of
the residual error of the FLANN structure adapted with
the exact algorithm and the approximate algorithm with a
step-size equal to 0.128. Each point of Figure 3 represents
the ensemble average, estimated over 100 runs of the al-
gorithm, of the mean value of the residual error computed
on 100 successive samples. In the figure the asymptotic
values (dashed lines) of the residual errors estimated with
(12) are also shown. While the exact algorithm converges
in less than 100,000 samples, the approximate algorithm
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state MSE with FLANN (F) and Volterra filters (V) for the exact
(e) and approximate (a) algorithms versus step-size.
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Figure 3: Evolution of the residual error with FLANN of the
exact (Fe) and approximate (Fa) algorithm (–) and corresponding
steady-state MSE values (- -).

reaches the steady-state MSE (the dashed line) only af-
ter several billions of samples. The learning curves of the
residual error for Volterra filters provide similar conver-
gence behavior. For each algorithm and for each AP order,
the convergence speed of the Volterra controller is lower
than that of the FLANN structure.
In conclusion, FLANN structures with P=1 can be prof-
itably employed for nonlinear multichannel ANC with per-
formances in most cases better than those of second-order
Volterra filters.
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