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ABSTRACT

This paper presents a minimization approach based on regularized
optimization [1] for use in spectral envelope estimation for speech
in the presence of noise. The objective function that is minimized
consists of the sum of a data fitting term and a linear combina-
tion of the following regularization terms: Minimum perturbation
energy, minimum estimate energy, peak preservation, and spectral
smoothing. Regularization weights are used to control the trade-
off between the regularization terms such that the estimates obtain
a lower bias and low variance, while preserving a shape that is
natural for speech.

1. INTRODUCTION

When estimating auto-regressive (AR) models of speech signals
in additive noise an ordinary linear prediction will estimate coef-
ficients that model the combined signal of speech and noise. The
formulation as an unconstrained minimization problem by means
of regularized optimization is made because a number of meaning-
ful cost functions exist for which a trade-off should be minimized.
This regularization approach was used by Murthi and Kleijn [2]
to ensure smoothness of a linear prediction spectral envelope of
clean speech. In this paper we combine a number of regularization
terms to address the problem of spectral envelope estimation in the
presence of noise.

1.1. One-Step Prediction Model with Structured Perturbation

We consider the following one-step prediction model
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where X is the noisy speech matrix, x is the noisy speech vector,
a is the AR coefficient vector, and r is the residual vector. N is the
frame length and p is the order of the AR model. The noisy data
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matrix and vector has been filled with zeros to ensure stable filter
coeffecients in a.

The method of total least squares (TLS) [3] allows a perturba-
tion of the noisy data with a perturbation vector ∆x ∈ R

(N+p)×1

and matrix ∆X ∈ R
(N+p)×p of perturbations ∆xi for i = 1,. . . ,

(N + p)(p + 1) without structure, i.e.

(X + ∆X)a = x + ∆x + r̃,

where r̃ ∈ R
(N+p)×1 is the residual vector of the perturbed system

of equations. In a TLS solution ∆X and a are obtained using the
singular value decomposition (SVD) [3][4]. ∆x is trivial to find
once ∆X and a are available. The TLS solution has the property
of minimizing ||[∆X|∆x + r̃]||F .

In the method of structured total least squares (STLS) [4] the
same expression is minimized but with a structure constraint (e.g.
Hankel structure as in this case) imposed on ∆X or on the aug-
mented matrix [∆X|∆x + r̃]. For feasibility and because ||r̃||2
will go to zero in the STLS solution we impose the structure on
[∆X|∆x], i.e.

∆x = [∆x1, . . . , ∆xN , 0, . . . , 0]T ,

and with a perturbation matrix ∆X that is defined using the Han-
kel operator H to equate

H([0, . . . , 0, ∆x1, . . . , ∆xN ], [∆xN , 0, . . . , 0]).

By exploiting the Hankel structure of [∆X|∆x] the residual r̃ of
the perturbed system of equations can be rearranged as follows,
where we use that ∆Xa = F∆x [4], i.e.

r̃ = (X + ∆X)a − x − ∆x = r + ∆Xa − ∆x

= r + F∆x − ∆x = r + F̃∆x,

with F̃ = F − I ∈ R
(N+p)×(N+p) given by

F̃ = T ([−1, ap, . . . , a1, 0, . . . , 0], [−1, 0, . . . , 0]),

where T denotes the Toeplitz operator. Due to the structure the
signal estimate ŝ is simply the sum of the leading length-N vector
in the noisy speech vector and the perturbation vector, i.e.

ŝ = xN + ∆xN .

Our quest is now to find a perturbation vector ∆xN that reduces
power when added to xN . The power should be reduced with an
amount equal to what we expect is the power of the noise vector.
We base our pursuit to this quest on an assumption of orthogonal
signal and noise vectors, i.e. s

T
n = 0.



Where the STLS method sets ||r̃||2 to zero our approach is to iden-
tify an AR model with minimum, but non-zero, ||r̃||2 under the
constraint that ||∆xN ||2 equate the expectation of ||n||2. We find
this approach more natural since our goal is to estimate the AR
coefficients of the noise-free speech, and since these coefficients
correspond to an AR model with nonzero residual. Furthermore
the STLS method calls for joint optimization of the perturbation
vector and the coefficient vector. This type of problem has a very
high complexity [4] and cannot be solved exact in finite time. It
can however be approximated by means of convergence towards a
local stationary point, e.g. using alternating minimization where
one vector is fixed when the other is estimated and vice versa until
the squared sum of changes in the vectors becomes smaller than a
small value ε. In this paper we will use two steps of this alternating
minimization, initially with a fixed prediction coefficient estimate.
Due to a very short frame length of 5 ms and a fifty percent overlap
between frames we choose to initialize this vector as the estimated
AR coefficients from the previous frame and in the first frame we
initialize with the coefficient vector of the noisy speech. We then
find the perturbation that gives the smallest residual vector, i.e.

∆x = arg min
∆x

||r̃||22 = arg min
∆x
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When the perturbation vector is found we discard the last p ele-
ments and use it to create the perturbation matrix and insert both
in the model and solve in a least squares sence for the coefficient
vector. This will cause the perturbed data to be described closely
by the AR model parameters a (in F̃) when ||r̃||22 is small and
in our case thereby using information from the previous frame to
obtain the current estimate of the speech spectral envelope. The
principle of allowing a small change using this definition of cost
has previously been used by Jensen, Jensen, and Hansen [5]. If the
signal is not quasi-stationary over at least two frames we recom-
mend that the coefficient vector of the noisy speech is used instead
of the estimated coefficient vector from the previous frame. We
denote this term the data fitting term, and it will be the first term in
the objective function of the minimization.

2. OBJECTIVE FUNCTION

The perturbation vector we want to find is the argument that mini-
mizes the objective function, i.e.

∆x = arg min
∆x

f(∆x),

where the quadratic objective function f(∆x) that consist of sev-
eral cost-defining regularization terms is given by

f(∆x) =
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2
+ ν1 ||∆x||22 + ν2 ||x + ∆x||22

+ ν3 ||W1F∆x||22 + ν4 | |W2DF(x + ∆x)||22 , (1)

with the regularization weights ν1, ν2, ν3, and ν4 ∈ R+, i.e. the
non-negative real numbers.

2.1. Power Reduction

The second term ||∆x||22 and the third term ||x + ∆x||22 drag
the solution in opposite directions so the relation between their
weights will determine how much of the power in x that will re-
main after adding ∆x. If the estimated relation between noise and

noisy speech power is given by ||n||22 = k ||x||22, then we use the
following relationship between the weights

ν1 = ν2

(

1 −
√

k√
k

)

, (2)

which for high weights, and s
T
n = 0, will ensure that

||∆x||22 = k ||x||22 = ||n||22 .

For feasibility we will neglect the amount of power that will be
distributed among the last p elements in ∆x. If necessary a regu-
larization term could be added to the objective function that would
provide zero perturbation of the last p elements.

2.2. Peak Preservation

Because voiced speech signals contain a high amount of power at
formant frequencies we want to pick out the highest peaks in the
noisy speech spectrum and preserve the power at these frequen-
cies, i.e. we neglect the noise at the peaks due to high signal-to-
noise ratio at these frequencies. The fourth term is given by

||W1F∆x||22 ,

where F ∈ R
(N+p)×(N+p) is a matrix with Fourier basis vectors

in its rows and W1 ∈ R
(N+p)×(N+p) is a diagonal weight matrix.

W1 will have the property of assigning a high cost to perturbations
at peak frequencies. How it is obtained is described by the pseudo-
code in Algorithm 1.

Algorithm 1 Calculation of weight matrix W1

for each frame do
calculate the magnitude spectrum
find index with peaks
peakcount← 0
for every peak (in decreasing magnitude order) do

if peak magnitude > 0.1 times the largest peak then
if peakcount < 3 then

save index of peak
increase peakcount by 1

end if
end if

end for
assign weight 1 at five neighboring frequencies centered at the peak

end for

2.3. Smoothness

The last regularization term is used to ensure a smooth magnitude
spectrum of the estimated speech signal. The preferred term would
be similar to the one formulated by Murthi and Kleijn [2], that is

1
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dω, (3)

but since we are looking for an objective function that can be op-
timized analytically (in closed form) and is computationally effi-
cient we propose a more tractable approximation of (3) given by

| |W2DF(x + ∆x)||22 ,

where D ∈ R
(N+p−1)×(N+p) is a discrete first order differentia-

tor, i.e.

D = T ([−1, 0, . . . , 0], [−1, 1, 0, . . . , 0]).



W2 ∈ R
(N+p−1)×(N+p−1) is a diagonal matrix that enables us to

use e.g. frequency dependent smoothness. Since we have left out
the absolute value operator we depend on the neighbouring Fourier
coefficients to have approximately the same angle in order for the
approximate differentiation (and squaring from the squared norm)
to be correct. In practice this has turned out to be an acceptable as-
sumption. The weight matrix W2 contains nothing but unit weight
between peaks.

2.4. Summary

When we combine all the previously described terms to a regular-
ized objective function to be minimized they act together to create
meaningful estimates; We reduce an amount of (noise) energy in
a way that preserves high power spectral regions (that we assume
to be formants) while ensuring a smooth spectrum of the estimate
with a shape that is slightly fitted to the estimated spectrum from
the previous frame. The main principle is illustrated in Figure 1.
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Fig. 1. The noisy speech spectral envelope (solid line) and what we want
to achieve (dashed line) by the optimization procedure.

2.5. Minimization of the Objective Function

The objective function (1) can be expanded and rewritten as

f(∆x) = ∆x
T
A∆x + 2bT

∆x + c,

where A ∈ R
(N+p)×(N+p), b ∈ R

N+p, and c ∈ R consist of
coefficients given by

A = F̃
T
F̃ + (ν1 + ν2)I + ν3F

H
W1

T
W1F

+ ν4F
H
D

T
W2

T
W2DF (4)

b = F̃
H
r + ν2x + ν4F

H
D

T
W2

T
W2DFx

c = r
T
r + ν2x

T
x + ν4x

T
F

H
D

T
W2

T
W2DFx.

Note that W1,W2, and D are highly sparse matrices which en-
ables us to calculate the matrix products very efficiently. The gra-
dient is given by

∇f(∆x) = 2A∆x + 2b,

thus the argument that minimizes f(∆x) can be found analytically
if we set this gradient vector equal to the zero vector and solve for
∆x. The solution to this problem is the minimum norm least-
squares solution, i.e.

∆x = −A
†
b,

where † denotes Moore-Penrose pseudo-inverse. Note that we do
not need to calculate c as it only adds a constant offset to the func-
tion that is minimized and therefore not will be a part of the solu-
tion. When ν1 and ν2 are chosen to have relative large values they
will cause a high valued constant diagonal matrix (second term in

Equation 4) to be a part of the square matrix A and it will in prac-
tice always have full rank which enables us to solve much more
efficiently for ∆x, i.e.

∆x = −A
−1

b.

3. MONTE CARLO SIMULATION

A Monte Carlo simulation with 1000 runs per frame has been used
to evaluate the developed method. An estimate of the noise-free
AR coefficient vector is obtained in each run, thus we obtain a set
of estimates for each frame. The average of the estimates is de-
noted the centroid and the distance between the noise-free coeffi-
cient vector and this centroid is used as a measure of estimator bias
and the average distance of the estimates in a set to the centroid is
used as a measure of estimator variance.
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Fig. 2. Monte Carlo scenario as it is used for evaluating the proposed
regularized method. The shaded region within the dashed square uses the
same coefficients in the synthesis filter in each frame but replaces the noise
realizations used as filter excitation signal and additive noise in each run.

The method is evaluated on a 500 ms segment of voiced speech
sampled at 16 kHz. The frame length is N=80 (5 ms) and the
frames are half overlapping. The speech segment is shown in Fig-
ure 3.

0 50 100 150 200 250 300 350 400 450 500

−50

0

50

100

Time [ms]

A
m

pl
itu

de

Fig. 3. The 500 ms noise-free speech segment used in the experiments.

A signal-to-noise ratio of 10 dB and a model order of p=16 have
been used in the experiments. The regularization weights are given
by ν2=10, ν3=1, and ν4=0.1 (ν1 is calculated in run-time using
Equation 2 and an estimate of k).

3.1. Distance Measures

We use the sum-squared error (SSE) and the Itakura distance mea-
sure [6, p328] as measures of distance between the estimated AR
coefficient vector â and the noise-free coefficient vector a, i.e.

dSSE(a, â) = (a − â)T (a − â),

dItakura(a, â, s) =
â

T
Rssâ

aT Rssa
,

where Rss is the autocorrelation matrix of the signal s and a is the
coefficients from a linear prediction coding (LPC) of s using the
same window as in the regularized method. Note that SSE equals
squared Euclidean distance.



4. EXPERIMENTAL RESULTS

Table 1 and Figure 4 contain objective measurements of the perfor-
mance in the form of estimator bias and variance averaged across
frames. Note that estimator bias in general is much smaller for
the developed method than the LPC and that estimator variance
is larger (but still small in the Itakura distance measure which is
the most refined measure of the two). Two spectral estimates are
shown in Figure 5 to illustrate the importance of the weight ma-
trices and the performance once the number of peaks used in the
peak preservation weight match the actual number.
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Fig. 4. Estimator bias (left) and estimator variance (right) in each frame.
The dashed lines have slopes equal to the division of the bias (averaged
across frames) from this regularized method and the LPC listed in Table
1. The estimator bias for the developed method is much lower than for the
LPC and the estimator variance is slightly higher than for the LPC.

Preliminary informal listening tests on a signal constructed from
xN+∆xN indicate good noise reduction but with some remaining
waterfall noise.

Estimator Bias Estimator Variance
Distance Measure SSE Itakura SSE Itakura

LPC 0.8371 0.6188 0.2607 0.1680
Regularized 0.4069 0.2031 0.4651 0.2534

Table 1. Estimator bias and variance averaged across frames for the
speech segment in Figure 3.

5. CONCLUSION

We have developed a highly flexible and stable method with a
closed-form solution and with a reasonably low computational cost.
The developed method has proven to reduce estimator bias in both
the SSE and Itakura distance measure. It has a larger estimator
variance in the SSE distance measure and only slightly larger esti-
mator variance in the Itakura distance measure. The basic princi-
ple where peaks are preserved while noise power is reduced from
the remaining smoothened spectrum works very well in voiced
regions, but it is not well suited for unvoiced speech. The high
amount of fine tuning that are needed to make the method work
well is a drawback of the method and a new method with a very
limited number of weights is currently being developed. Elements
from this method could very well be used as regularization terms
for already existing methods to ensure e.g. a smooth or a peak pre-
served spectrum. Perceptual weights could be incorporated in the
weight matrices to improve the perceived quality.
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Fig. 5. Effect of two (upper) and three (lower) allowed peaks. Two peaks
gives a good spectral envelope estimate and three peaks gives an additional
peak in the estimated spectral envelope in this example.
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