
LIMITATIONS OF FIR MULTI-MICROPHONE SPEECH DEREVERBERATION IN THE
LOW-DELAY CASE

Markus Hofbauer and Hans-Andrea Loeliger

Signal and Information Processing Laboratory
Swiss Federal Institute of Technology, Zürich, Switzerland
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ABSTRACT

In this paper multi-microphone dereverberation is considered un-
der the constraint that no or little additional delay should be in-
troduced by the FIR deconvolution filters. This is crucial for a
number of applications such as hearing aids etc. Assuming that
the acoustic impulse responses (AIRs) are known – e.g. by es-
timation, we determine the maximum degree of attainable dere-
verberation. Even though the AIRs are in general non-minimum
phase, complete dereverberation can be accomplished in principle,
using causal FIR filters of the same order as the AIRs, yielding no
or only a little additional delay. We show that complete derever-
beration with no or little delay will, however, reduce the SNR. For
a given SNR gain and low delay, therefore, the achievable derever-
beration is limited. We employ a time domain FIR multichannel
Wiener filter with a delay constraint to find the MSE-sense opti-
mal deconvolution filters. Dereverberation performance and SNR
gain are demonstrated for typical AIRs with reverberation times of
T60 ≈ 500ms and N = 4000 taps which have been measured in a
conference room. Furthermore, we propose a new method utiliz-
ing a shaped desired total response, which is capable of selectively
eliminating late reverberation while maintaining the SNR.

1. INTRODUCTION

Reverberation of speech in rooms with large reverberation time
constants may decrease speech intelligibility and listening com-
fort. If the acoustic impulse response (AIR) from the source to the
microphone is known, dereverberation can be performed by invert-
ing the AIR. Due to the non-minimum phase nature of typical
AIRs, an exact single channel inversion requires a noncausal – of-
ten slow decaying – IIR filter with a large delay [1]. However, it is
well known that, using more than one microphone, a complete in-
version can be performed by a set of causal FIR filters (with same
order as the AIRs), which yield a zero total delay or any specified
positive total delay [2]. Many applications do only accept a very
small additional processing delay – in hearing aids, e.g. a maxi-
mum of about t = 10ms is admissible. In this paper we determine
the degree of dereverberation which can be expected, under the
low delay constraint, for typical AIRs of medium sized rooms with
reverberation times of T60 ≈ 500ms (using two microphones).
We demonstrate that complete dereverberation can be performed
in principle. However, the SNR with respect to ambient or coher-
ent noise is decreased at the same time. For a given demanded
SNR gain, therefore, the achievable dereverberation is limited.

There are several multi-microphone methods which accom-
plish some degree of dereverberation. In [3], beamforming is gen-

eralized to AIRs instead of simple propagation differences. Con-
volutive blind source separation techniques aim at blindly estimat-
ing the AIRs and to perform a separation and deconvolution of the
sources [4],[5]. These methods – using filters mostly determined in
the frequency domain – however generate non-causal filters which
produce a large delay of about half of the AIR length. We assume
the AIRs to be perfectly known (e.g. by estimation) and utilize
a time domain FIR multichannel Wiener filter (WF), with a time
domain delay constraint, to find the MSE-sense optimal deconvo-
lution filters. The WF thus demonstrates the maximum degree of
achievable dereverberation that can be expected.

To improve the low-delay dereverberation performance we pro-
pose a new method utilizing a shaped desired total response, which
selectively eliminates late reverberation while maintaining the SNR.
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Fig. 1. Two channel deconvolution of AIRs hi with total delay d.

2. PROBLEM FORMULATION

In a reverberant and noisy environment the ith sensor of an array
with m microphones receives the signal xi[k]

xi[k] = (hi ∗ s)
∣

∣

∣

k
+ vi[k], (1)

where i = {1, .., m}, hi = {hi[k]} is the acoustic impulse re-
sponse from speech source s and vi[k] is the noise at the ith sensor.

We aim at finding a set of m causal FIR filters wi = {wi[k]}
of the same order as hi such that

y[k] = ŝ[k − d] =

m
∑

i=1

(wi ∗ xi)
∣

∣

∣

k
. (2)

Perfect deconvolution of the source component s is therefore
obtained if

m
∑

i=1

(hi ∗ wi)
∣

∣

∣

k
= t[k] = δ[k − d], (3)



where t[k] is the total response from the speech source to the out-
put y and d the total delay. The two channel case (m = 2) is
shown in Fig. 1. The minimum possible delay dmin corresponds to
the propagation time delay from the source s to the microphones.
For d = dmin no additional delay ∆d is introduced and filters wi

are causal, with their main power concentrated at k = 0.
For m = 2, Eq. (3) defines a system of nh +nw +1 equations

for the 2nw + 2 coefficients of w, where nw and nh are the filter
orders of w and h, respectively. If the filters hi, hj do not share
common zeros in the frequency domain, and if nw = nh−1, there
exists a unique solution of filters w [2]. In [6] it is shown that for
most AIRs h, orders of nw ≥ d(nh − 1)/(m − 1)e are sufficient
to solve (3), i.e. in the two channel case nw ≥ nh − 1.

The existence of a set of causal FIR filters w which solve (3),
even for non-minimum phase AIRs h, follows from a well known
identity for polynomials (Bezout’s Theorem) [7],

m
∑

i=1

Hi(z)Wi(z) = 1 (4)

where Hi(z) and Wi(z) are the z-transforms of hi and wi, respec-
tively.

The noise components vi will be conveyed to the output as

yv[k] =

m
∑

i=1

(wi ∗ vi)
∣

∣

∣

k
. (5)

Thus, when calculating optimal filters wi, which fulfill (3), we also
wish to minimize the noise output power.

3. OPTIMAL FIR DECONVOLUTION FILTERS

3.1. Distortionless response filter

Solving (3) gives a filter set w such that

y[k] = s[k − d], (6)

i.e. the source is perfectly deconvolved and appears at the output
without any distortion. At the same time one wishes to minimize
the noise variance at the output. If no constraint on the delay and
causality of the filters w is required, the minimum variance distor-
tionless response filter (MVDR) can be calculated in the frequency
domain [8]

W(ω) =
H(ω)H

Φ
−1
vv

(ω)

H(ω)H
Φ

−1
vv (ω)H(ω)

, (7)

with H(ω) = [H1(ω)H2(ω) · · ·Hm(ω)]T , Hi(ω) the Fourier
transform of hi, and Φvv(ω) the noise correlation matrix. The
filter W(ω) minimizes the noise variance while maintaining

W(ω)T
H(ω) = 1, (8)

i.e. perfect deconvolution of the source. If v stems from uncor-
related sensor noise, W(ω) is a matched filter. If the AIRs hi

are simple propagation delays, W(ω) reduces to a delay-and-sum
beamformer. Typical filters wi[k] obtained via (7) exhibit non-
causal taps and thus produce large delays in the order of d ≈ nw/2.

If a delay constraint is required, (3) can be used to find the
distortionless response filters w. In order to avoid the compu-
tational demanding direct solution of the possibly ill-conditioned

equation system (3), we alternatively define the frequency domain
cost function

J(W(ω)) =

∣

∣

∣

∣

∣

∑

i

Wi(ω)Hi(ω) − T (ω)

∣

∣

∣

∣

∣

2

, (9)

where T (ω) is the Fourier transform of the desired total response
t[k]. We solve (9) by a gradient method, yielding the following
update rule for the ith filter Wi(ω):

W l+1

i (ω) = W l
i (ω)− µ ∗

(

∑

i

W l
i (ω)Hi(ω) − T (ω)

)

H∗

i (ω)

(10)
For the specified desired total response t[k] = δ[k − d], (10) con-
verges to the distortionless response filter wi, fulfilling (3).

3.2. Multichannel Wiener filter (WF)

As will be shown in section 4, the filters wi which achieve perfect
deconvolution will produce an SNR loss at the output. In order to
determine filters wi which optimize the degree of deconvolution
and the output SNR with respect to the mean squared error (MSE),
we utilize the time domain FIR multichannel Wiener filter.

We define the following stacked data and filter vectors:

xi[k] = [xi[k] xi[k − 1] · · ·xi[k − nw]]T (11)

x[k] = [xT
1 x

T
2 · · ·xT

m]T (12)

wi = [wi[0] wi[1] · · ·wi[nw]T ] (13)

w = [wT
1 w

T
2 · · ·wT

m]T (14)

Equation (2) then can be written as:

y[k] = w
T
x[k] (15)

The multichannel Wiener filter (with m inputs and one output) is
given by

wopt = Rxx

−1
rxs, (16)

where Rxx is the autocorrelation matrix of the microphone signals

Rxx = E
{

x[k]x[k]T
}

= Rxsxs + Rvv (17)

and rxs the cross-correlation vector of x and s

rxs = E{x[k]s[k − d]} . (18)

In (18) the allowed delay d is specified, which imposes a constraint
on the Wiener filter. We now calculate Rxx

Rxx =







Rx1x1 Rx1x2 · · ·
Rx2x1 Rx2x2

...
. . .






(19)

and rxs

rxs = [rT
x1s · · · r

T
xms]

T (20)

for a given set of AIRs hi, a given autocorrelation rs[k] of s and
a given noise autocorrelation matrix Rvv . Element

(

Rxixj

)

a,b
of

matrix Rxixj
then amounts to

(

Rxixj

)

a,b
= rxixj

[a − b] = E{xi[k − a + 1]xj [k − b + 1]}

= (hi[−.] ∗ hj [.] ∗ rs[.])
∣

∣

∣

k′=a−b
+
(

Rvivj

)

a,b
(21)



where hi[−.] denotes time reversion. Finally, element rxis(a) of
vector rxis is given by

rxis(a) = rxis[a − 1 − d] = E{xi[k − a + 1]s[k − d]}

= (hi[−.] ∗ rs[.])
∣

∣

∣

k′=a−1−d
. (22)

With (21) and (22) the Wiener filter (16) can be obtained.

3.2.1. Noise fields

We consider two types of noise sources: a coherent point noise
source and a completely incoherent source with spatially uncorre-
lated noise components at the sensors (e.g. sensor noise). The au-
tocorrelation matrix of white sensor noise is given by Rvv = σ2

vI,
whereas for the coherent point noise source Rvv is calculated the
same way as for the point speech source by (21), replacing h with
the corresponding noise source AIRs hv , and s with v, respec-
tively. An ambient noise source with an almost completely diffuse
sound field and a sinc-type coherence function may be considered
as a superposition of the two above sources (i.e. coherent at low,
incoherent at higher frequencies).

3.3. SER gain and SNR gain

In order to measure the degree of dereverberation we define the
ratio of signal to echo power SER. If we assume a white source
signal s, the SER at sensor 1 is calculated from h1 as:

SERx1
= 10 log10

(

max(|h1[k]|2)
∑

k
|h1[k]|2 − max(|h1[k]|2)

)

(23)

The SER at the output y we obtain from the total response t[k]:

SERy = 10 log10

(

max(|t[k]|2)
∑

k
|t[k]|2 − max(|t[k]|2)

)

(24)

The reduction of reverberation is then specified by the SER gain:

SERgain = SERy − SERx1
(25)

Signal and noise powers p at sensor 1 and at the output y are given
as

px1s
=

∑

k

|h1[k]|2σ2
s (26)

px1v
= σ2

n (27)

pyv =
∑

i,k

|wi[k]|2σ2
v (28)

pys =
∑

k

|t[k]|2σ2
s (29)

for the case of white uncorrelated sensor noise. The white noise
SNR gain thus amounts to:

SNRgainWN = SNRy − SNRx1
(30)

= 10 log10

(

∑

k
|t[k]|2

∑

i,k
|wi[k]|2 ·

∑

k
|h1[k]|2

)

In the case of a coherent point noise source the SNR gain is

SNRgainPS = SNRy − SNRx1
(31)

= 10 log10

(
∑

k |t[k]|2 ·
∑

k |hv
1 [k]|2

∑

k
|tv [k]|2 ·

∑

k
|h1[k]|2

)

where tv[k] =
∑m

i=1
(hv

i ∗wi)|k is the total response for the point
noise source v.
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Fig. 3. SER gain vs. SNR gain of room1 (three sets) with allowed
additional delays ∆d = 10 samples (solid) and ∆d = 80 (dotted).

4. ACHIEVABLE SER AND SNR GAINS FOR REAL
ENVIRONMENTS

We have measured a series of sets of AIRs h1 and h2 (two micro-
phones), with lengths of nh = 4000 taps (fs = 8 kHz), in a con-
ference room (room1, 12m x 5m x 2.5m) with a reverberation time
of T60 ≈ 500ms, and in an office room (room2, 5m x 3.5m x 2.5m,
T60 ≈ 350ms). The speaker microphone distance was larger than
4m and the microphones were 14cm apart. Positions of speaker
and microphones were changed for each set. Assuming white un-
correlated sensor noise and varying the input SNRx1

, we then cal-
culated the Wiener filter. The allowed additional delay was restric-
ted to a few samples (∆d < 80). Fig. 2 shows the AIR h1 and the
resulting total responses ta, tb and tc for three different SER gains.
Case tc indicates a high level dereverberation (SERgain =21.7 dB),
which however yields a severe SNR loss (SNRgain = −19.6 dB).
Case ta yields some dereverberation (SERgain = 8.4 dB), while
maintaining a positive SNR gain (SNRgain = 1.0 dB).



Fig. 3 shows the SER- and SNR gains which can be expected
for a typical room (T60 ≈ 500ms) and a low delay constraint.
If a positive SNR gain is desired, the maximum achievable SER
gain is about 8 − 12 dB. Listening tests still reveal a significantly
reduced reverberation for these SER gains. Perfect dereverberation
can be obtained in principle with values SERgain = 50 dB and
SNRgain = −30 dB (not depicted).

Fig. 4 illustrates the SER gain when the allowed delay is in-
creased and a fixed SNR gain of 0 dB is demanded. Larger de-
lays result in higher SER gains. In general, a coherent point noise
source allows higher SER gains than uncorrelated sensor noise or
an ambient noise source.

5. SHAPED DESIRED TOTAL RESPONSE TO
SELECTIVELY ELIMINATE LATE REVERBERATION

Eq. (3) has a causal FIR solution for any desired total response
tdes[k] as long as tdes[k] = 0 for k < dmin and k > nw+nh+1. In
order to selectively eliminate late reverberation, while maintaining
positive SNR gains, we propose the usage of a shaped desired total
response tdes[k]

tdes[k] = env[k] ·
m
∑

i=1

hi[k], (32)

where env[k] is an envelope to shape tdes[k]. We choose, for in-
stance, an exponentially decaying envelope with time constant τenv:

env[k] = exp[−τenvk]. (33)

A variety of envelope shapes are possible. We use tdes[k] directly
in (3) or in a slightly modified form of eq. (22), namely

rxis(a) = (hi[−.] ∗ rs[.] ∗ tdes[.])
∣

∣

∣

k′=a−1−d
(34)

to calculate the Wiener filter. Fig. 5 shows the resulting total re-
sponses ta and tb of the Wiener filter for two envelope shapes.
Late reverberation is clearly more reduced compared to the un-
shaped case tc with the desired total response tdes[k] = δ[k − d].
Note that in all cases the SNR gain is the same (SNRgain ≈ 1 dB).
Listening tests confirm these results.

6. CONCLUSION

Given the AIRs from the speech source to the microphones, a com-
plete dereverberation can be performed, in principle, using causal
FIR filters of the same length as the AIRs. In this case the to-
tal response from speech source to the output is a delayed pulse
t[k] = δ[t−d]. However, for a small allowed delay d of a few sam-
ples, complete dereverberation will result in a severe SNR loss. If a
positive SNR gain is required, the degree of achievable dereverber-
ation is limited to SER gains of about 8− 12 dB for medium sized
rooms with reverberation times of T60 ≈ 500ms (2 mic. case).
Listening tests still reveal a significantly reduced reverberation for
these SER gains.

The deconvolving filters were calculated by a time domain
multichannel Wiener filter, which is the optimal linear estimator
with respect to the MSE cost function. An imposed delay con-
straint ensures the specified total delay d.

In order to selectively eliminate late reverberation, while main-
taining positive SNR gains, we have proposed to use the given
AIRs shaped by an envelope as desired total response, instead of a
delayed dirac-pulse. This concept demonstrated an effective elimi-
nation of late reverberation with positive SNR gains, even for a low
total delay.
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