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ABSTRACT

In this paper, we describe a new blind source separation (BSS)
method that uses spatial information derived from the direction of
arrival (DOA) estimates of each direct and reflected sound. The
method we proposed has the following steps: (1) each DOA ises-
timated using matching pursuit and re-optimized after each new
DOA isestimated, (2) using these DOA estimates, the mixing ma-
trix is also estimated and the inverse of the mixing matrix is used
to separate the mixture signals. Our experiments yielded a better
signal separation with the new method than with the conventional
frequency domain independent component analysis (ICA) based
BSS method.

1. INTRODUCTION

Blind source separation (BSS) has recently been studied by many
researchers. Many methods based on independent component anal-
ysis (ICA) have been proposed [1], [2], [3], [4], [5], [6]. ICA is
used to estimate the unmixing matrix and to separate mixture sig-
nals into independent components, assuming that the source sig-
nalsareindependent. Non-1CA based BSS methods have also been
proposed [7], [8]. Sparse decomposition with matching pursuit
and applying it to BSS was proposed by Gribonval [8] where he
computed the sparse decomposition of stereo audio signals with a
matching pursuit type agorithm and found the parameters of the
atoms of decomposition were clustered. Estimates of sources were
then recovered by partial reconstruction using only the appropri-
ate atoms of decomposition. For instantaneous mixtures or for
convolved mixtures consisting of short impulse responses, these
methods are very effective in separating sources. However, in the
case where the mixture is a convolved mixture and impulse re-
sponses are long, which is commonly true in the real world, they
perform poorly and the separation is not enough [9].

In the real world, the transfer function between the source
and microphone has long impulse response with many reflected
sounds. If we could estimate all reflected sounds, it would be pos-
sible to estimate the complete impulse response and to separate
sounds. Asit isdifficult to estimate all reflected sounds, it would
be more effective to consider the spatial information and estimate
direct and main reflected sounds to establish a source separation
system. In the BSS methods that have been suggested, spatia in-
formation has not only been considered for instantaneous mixtures
but also for convolved mixturesin the real world.

*The author performed the work as a guest researcher at KTH.

In this paper, we propose a BSS method that uses spatial infor-
mation derived from the results of direction of arrival (DOA) esti-
mates for direct and early reflected sounds. We need to find many
DOAs to estimate the mixing system. However it isimpossible to
find true DOAs using conventional beam forming techniques when
the number of sources exceeds that of microphones. We suggest a
new DOA estimates technique, which is using a matching pursuit
algorithm, and it is possible to find true DOAs even if the num-
ber of sources exceeds that of microphones. The basic outline of
our algorithm is as follows. We first find the normalized power of
the array output, P(#), as a function of the DOA, 6. Then to es-
timate the DOA of direct and indirect (reflected) signals we apply
amatching pursuit algorithm, which includes a re-optimization of
the DOAs at each iteration step. The sounds coming from differ-
ent DOAs are then classified into a small set of sources. We then
form estimates of the impulse responses for each source and mi-
crophone combination from these classified DOAs. The separated
source signals are obtained by filtering the observations with the
inverse of the mixing matrix estimate.

We compared our method with the conventional frequency do-
main |CA based BSS method [5] using two sources, two micro-
phones, and a convolved mixture. Our experiments yielded better
signal separation for the new method than that for conventional
frequency domain ICA based BSS.

2. DOA ESTIMATION

The DOA estimation we did consists of the following steps. We
first separately calculate the normalized power of the array output,
P(0), for each frequency bin using the Delay-and-Sum method [10].
Wethen average P(6) over all frequency bins. Finally, we perform
peak picking using a matching pursuit algorithm to estimate the
DOA over al frequency bands. The matching pursuit algorithm
includes, after each iteration step, a re-optimization of all DOAs
found thus far. Its main characteristics is that it is possible to find
true DOAs when the number of sources exceeds that of micro-
phones. We will discuss these stepsin more detail in the following
subsections.

2.1. Calculation of power of array output

The power of the Delay-and-Sum array output is calculated as
P(6) = d()"Rd(9), @

where d() is the steering vector:

d(9) = [1,exp(—jwr), - ,exp(—jw(M — 1)7)]". (2
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Here, M is the number of microphones, = = 2528 4 is the dis-
tance between microphones, c is the velocity of sound, and R is
the covariance matrix of the array outputs x(¢) i.e.:

R = E[x(t)x(t)"]. €)

For K sounds (i.e., K different DOAS) and two microphones,
the observed signals are

[ X, )] _ [ Sh) Hi(w)Sk(w, t)
X{wt) = [Xz(%t)] = {zi; H%(w)sw,t)] @

where H;;, and Ho;, are the respective transfer functions between
the k’th sound and each microphone. The covariance matrix is

R(w) = BX(w, )X (@, 1)"] = [21 :li] NG
K

i1 ZE[|ZH1kSk|2], (6)
k=1

K
r12 :E[ZHlkHQ*HSHZ+ZH1nglSkSl*]; (7)
k=1 I#k

21 =T, (8)
K

ras = B[| Y HaSik|’], )
k=1

and the steering vector is
d(8,w) = 1, exp(—jwr)]". (10
The power of array output is then
P(6,w) = d(8,w)"R(w)d(8,w)
=711 +ra+ 2 R{rexp(—jwr)}, (11)

where R indicates the real component.

The first and second terms of (11) do not depend on 6 and
we only need to consider the third term. The third term of (11),
P(8,w),is

P(6,w) =P(8,0) — E[|X: ] - E[|X.[*]

K
=2R B[ HuHi| Sk

+ 3 HiH3, 5457 ] exp(— jw)}. (12)
[

Therefore, the average of P (6, w) over the frequency binsis

P(“”-g(e) = P(€7wl)

|

“R{Hip(w

2|
M-

1

-
Il

1
N -

M=
F{jw

E[|Sk(wi)|’]

=~
Il

1

-
Il

O Ha ()" exp(—jwir)}]
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. E[Sk(wi)Sl(wi)*] exp(—jwn)}], (13)

where IV is the number of frequency bins. Since E[Sy,(w).Si(w)"]
isgeneraly smaller for k # [ than for k = | we have assumed that
the second term in (13) can be set to zero. We can then express
(13) as

K
avrg Z avrg 0|9k (14)

k=1

where Py, (6]6%) is the frequency average of the power of array
output from the k’th sound.

As we are only interested in finding the DOAs at this point,
we let Hi(w) = exp(—jwTix) and Hop(w) = exp(—jwTak).
Thus, the frequency average from the k'th sound, P4 (6|61 ) be-
comes

Parg(8161) :%@W]

. Z R{exp(—jwi(rir — T2x))

i=1

-exp(—jwiT) }, (15)
Tik — Tok 2@, (16)
__dsinf (17)

Cc

where 6, is the true direction of the k’th sound position and 6 is
the steering direction.

2.2. Matching Pursuit to estimate DOA

A matching pursuit algorithm was introduced to decompose any
signal into alinear expansion of waveforms[11]. We used a mod-
ified matching pursuit algorithm that includes a re-optimization
step [12] to decompose the signal into a set of direct and reflected
sounds. We define the vector of the angles of : DOAs which are
estimated during ¢ iterations as

@i = [617 e 79i]T7 (18)

where O is a vector without any elements. The matching pursuit
algorithm for DOA estimation consists of the following steps:

1. Defineadictionary as

D= {PGUT9”(9|0k)}—ﬁ/2<9k <7/2 (19)
i.e., an element of family D is defined as (15) normalized
by its norm:
Pavrgn(9|9k) = = avr9(9|9k) (20)
\/ fﬂ—ﬂ./z |Pavrg 9|9k)|2d9
2. Initialization:
60(0) = Pobserved(e) (21)
i =1. (22)

3. Calculate theresidual for al éy:
ei(010x) = ei 1(0) — ai—1(0k) Pavrgn (0161),  (23)

where a;_1 () denotes the inner product of e;—1(6) and
Pavrgn(9|9k)-
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4. Select 6, (estimate DOA 6;):
6; = argmin (816:)]2. 24
%k E lei (610 )] (29

5. Re-optimize ©; (all DOAS) and calculatetheresidual e; (#):

12

ei(6) = eo() =D a(01) Pavrgn(6161),  (25)

=1
where a(6;) is computed from (32).

6. If
Jed(0)ds
10log +——— 2
00gfe?(0)d0<6’ (26)
where § is the stopping criterion,
i=i+1, 27)

go to step 3, or else end the procedure.

2.3. Re-optimization of the DOAs

A high quality, consistent analysis-synthesis method with re-opti-
mization of amplitude and frequency parametersin sinusoidal cod-
ing is described by Vos [12]. Here, we use a similar method of
re-optimizing the DOAs with a gradient algorithm. We define the
vector of the angles of L DOAs as

62[917"' )eL]T' (28)
The basis vectors and the observed vector are defined as
Bovrgn (Bk) = [Pavrgn (= 5106), 7+, Pavron (516))", (29)

eo = leo(=3), - eo ()], (30)

wherewe have discretized the normalized frequency average of the
power of array output of the k’th sound as afunction of continuous
steering direction variable 6.

For a given set of DOAS, the analysis matrix containing the
basis vectorsis constructed according to

f’avrgn@ = [f)avrgn (01)7 e ;Isavrgn(eL)]~ (31)
The projection of ep onto a space that is defined by the column
VECtors Pavrgn (61), -+, and Pawvrgn (0L) is

a= (lsgvrgnG : f)avrgn@)71 : lsgvrgnG * €0. (32)
whichisfromtheleast-squaresresidual. Optimum DOAsarethose
for which the energy of the projection of g onto the column space
of Puyrgne ismaximized

argmax{f)avrgne . é}T . {f)avrgne . é}
©
= argmax el Poey, (33)
©

where we define the projection matrix as

Po :f)avrgne : (f)gvrgne ' f)avrgn@)71 ! f)gjvrgne' (34)
We used a gradient search based on Newton’s method to find the
local maximum of e Poey in the neighborhood of a set of ini-
tial DOAs. At iteration m, Newton's method defines the updated
DOAsas

0 =0 L+ H {1 8om 1), (35)
where go and He represent the gradient vector and the Hessian
matrix of the energy of the projection:
0 r

go Z%eo Poey, (36)
0* T
H@ :Weo P@eo. (37)

3. IMPUL SE RESPONSE ESTIMATION AND UNMIXING

If we assume that the estimated L DOAs have come from two
different sources, we can classify L different sounds into two cate-
gories based on their cross correlation. If L; sources are classified
into category 1, and L, sources are classified into category 2, the
mixing matrix can be estimated in the time domain as

A All(t) Alz(t)
A= [/121(0 A22(t)] ’ (38)

Ly _
A1 (t) :Zali '5(t—(D0+% + D11)), (39)
=1

Lo
12112(15)ZZazi'é(t—(Do+%+D2i)), (40)

Ly ,
Aoy (t) = Zau -6(t— (Do — % + D1)), (41)
im1

Lo
n T2i
A22 (t) = lzzl az; * (5(t (DO 9 + D21)), (42)
where 71; and r»; are the time delays between microphones for
each DOA i, Do is an initia delay (which is arbitrary), D;; and
D; are the time lags from the first sounds (which are obtained
from calculating cross correlations of sounds and the first sound),
and a;; and a»; are the amplitudes of sounds obtained from DOA
estimation results (a(6;) in (25) ).
We computed unmixing matrix B as the inverse of the mixing
matrix
B=A"' (43)

4. EXPERIMENTS

We separated mixture sources both for artificial and real-world
data. The distance between microphones was 5 cm under both con-
ditions. The artificia conditions arein Fig. 1. The speech signals
were assumed to arrive from four directions. Thisis equivalent to
a mixture with one direct and one reflected sound for each inde-
pendent source. The real-world data were recorded in our office,
which had areverberation time of 0.76 s. Sources were located at
-30 degrees and 45 degrees. We used a data sampling frequency of
44.1 kHz, aframe length of 46 ms, and aframe update of 23 ms.

We compared our results with those obtained from the ICA
method of Kurita [5]. We set the number of iterations to 1000
and the step-size parameter to 0.001 for this conventional ICA
based BSS. The stopping criterion was set to 30 dB for the new
method. To evaluate performance, we used noise reduction rate
(NRR), which is defined as the output signal to noise ratio (SNR)
in dB minustheinput SNRindB [9].

Figure 2 has the matching pursuit iteration for the artificial
data. The x-axis is the direction of arrival, and the y-axis is the
power of the arriving sound. The top curve is the observed power
eo. The second curve isthe residual e; after the first DOA is es-
timated. The third, fourth, and last curve are the residual e, es,
and e4. Tables 1 and 2 list the experimental results. We found ten
sounds in the real-world data for the stopping criterion of 30 dB.
Theresidual e;p wasamost flat. Separation with proposed method
was superior to that of conventional ICA based BSS both for ar-
tificial and real-world data experiments. Separation improvement
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Fig. 2. Matching pursuit iterations.

Table 1. NRR values for artificial data
Method NRR [dB]
Conventional ICA 18.7
Proposed method 255

Table 2. NRR values for real-world data
Method NRR [dB]
Conventional ICA 3.98
Proposed method 434

for the real-world data experiment isless than that for the artificial
experiment, since estimation of reflected sounds was insufficient.
The additional improvement could be achieved by narrowing the
beam in DOA estimation.

5. CONCLUSION

In this paper, we proposed a new BSS method that uses spatia
information derived from the results of DOA estimates for each
direct and reflected sound obtained by means of beam forming.
Its main advantage is that we can estimate the mixing system for
direct and early reflected sounds and separate sounds through a
suitable technique with sound source separation in the real world.
A matching pursuit algorithm that includes a re-optimization step
for each iteration was used for DOA estimates and could estimate
these correctly.

The source separation with the method we proposed was bet-
ter than that obtained by ICA both in artificial and real-world data

experiments. It improved the noise reduction rate by about 7 dB
inan artificial data experiment and by about 0.4 dB in areal-world
data experiment. We expect that additional improvement can be
achieved in real-world cases if the accuracy of estimation of re-
flected soundsisincreased. Thiscould for instance be achieved by
narrowing the beam in DOA estimation. We are currently working
on this.
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