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ABSTRACT

The proposed paper deals with the robust estima-
tion of frequency-dependent signal-to-interference ra-
tios (SIRs) and spatial coherence functions in the DFT
domain for non-stationary wideband signals. It can be
used to realize, e.g., optimum adaptive beamformers
or can be used as a confidence measure in combina-
tion with automatic speech recognition in noisy envi-
ronments.

1. INTRODUCTION

Multi-sensor speech enhancement using, e.g., multi-
channel noise-reduction or optimum adaptive beam-
forming, requires separate estimates of cross-power
spectral densities (CPSDs) of the desired signal and
of the interference, and frequency bin-wise SIRs in or-
der to assure optimum quality of the output signal [1].
A method for estimating the power spectral density
(PSD) of -relative to the desired signal- slowly time-
varying noise is proposed in, e.g., [2]. In this work, we
present a new method for estimating (a) the spatial
coherence functions of the desired signal and of the
interference between the sensors and (b) the SIR at
the sensors for highly non-stationary PSDs. Spatial
coherence functions should be slowly time-varying rel-
ative to the PSDs. In Section 2, we describe the SIR
estimation and analyze its statistical characteristics.
Experimental results illustrate the robustness of our
approach in Section 3.

2. SIR ESTIMATION USING SPATIAL

COHERENCE

The estimation of the SIR is a two-step procedure. A
biased estimate of the SIR at the sensors can be de-
termined using the spatial selectivity of a fixed beam-
former (Section 2.1). The bias is due to the fact that
the beamformer does not separate the desired signal
and the interference perfectly. It depends on the spa-
tial coherence of the desired signal and of the inter-
ference at the sensors. For correcting the bias, it is
thus necessary to estimate the spatial coherence w.r.t.
the desired signal and w.r.t. interference separately
(Section 2.2), which requires a discrimination between
the sources (Section 2.3). The statistical analysis of
this estimate of the SIR shows that its variance nor-
malized to the SIR increases with a power of 2 of the
true SIR at the sensors with increasing and decreasing
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SIRs(Section 2.4). This reduces the accuracy of the es-
timate of the SIR especially at low and high SIRs and
requires robustness improvements (Section 2.5).

The estimation is carried out in the discrete Fourier
transform (DFT) domain with DFT length N . The
discrete frequency index is denoted by µ. The block
time index is k. Lower case and upper case bold font
represent vector and matrix quantities, respectively.
∗, T , and H stand for complex conjugation, matrix
or vector transposition, and conjugate transposition,
respectively.

2.1. Biased spatial estimate of the SIR

For bin-wise spatial estimation of the SIR 1, the
temporally windowed DFT-domain sensor signals
x(k, µ) = (X0(k, µ), X1(k, µ), . . . , XM−1(k, µ))

T of a
microphone array with M microphones are used. The
array is steered to the position of the desired source.
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Ŝxx(k, µ)
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Figure 1: Biased spatial SIR estimate.

According to Figure 1, the sensor signals are
weighted and summed up by a fixed uniformly
weighted delay&sum beamformer w, yielding the
beam-formed signal Y (k, µ) = wHx(k, µ). From the
sensor signals x(k, µ) and from the beamformer out-
put signal Y (k, µ), recursively averaged windowed pe-
riodograms are calculated using an exponential for-
getting factor 0 < βS < 1. From Y (k, µ), an estimate
of the PSD of the beamformer output signal is ob-
tained as Ŝyy(k, µ) = wH Ŝxx(k, µ)w, where Ŝxx(k, µ)
is the estimated CPSD matrix of the sensor signals.
From the sensor signals, we calculate the average PSD
Ŝxx(k, µ) = 1/M ·

∑M−1
m=0 Ŝxmxm(k, µ). Due to the

spatial selectivity of the beamformer, Ŝyy(k, µ) is an
estimate of the PSD of the desired signal. Forming the
complementary signal by subtracting this estimate of
the desired signal from the PSD of the sensor signals
Ŝxx(k, µ) thus yields an estimate of the PSD of the
interference, i.e.,

Ŝȳȳ(k, µ) = Ŝxx(k, µ)− Ŝyy(k, µ) . (1)

1We assume that the frequency bins are mutually un-
correlated, which is asymptotically (N → ∞) true. This
allows to define the average sensor SIR in the DFT domain
as a function of frequency.



The biased estimate Υ̂(k, µ) of the SIR at the sensors
is finally given by the ratio2

Υ̂(k, µ) =
Ŝyy(k, µ)

Ŝȳȳ(k, µ)
. (2)

The PSDs Ŝyy(k, µ), Ŝȳȳ(k, µ) in (2) depend on the
PSDs of the desired signal and of the interference at
the beamformer output, respectively. Assuming spa-
tially homogeneous wave fields, the PSDs w.r.t. the
desired signal and w.r.t. the interference at the beam-
former output can be written as quadratic forms as
Ŝdd(k, µ)w

H Γ̂dd(k, µ)w and Ŝnn(k, µ)w
H Γ̂nn(k, µ)w.

Ŝdd(k, µ) and Ŝnn(k, µ) are the PSDs of the desired
signal and of the interference at the sensors, respec-
tively. Γ̂dd(k, µ) and Γ̂nn(k, µ) are the spatial coher-
ence matrices w.r.t. the desired signal and w.r.t. in-
terference at the sensors, respectively. This allows to
write Υ̂(k, µ) after some rearrangements as follows:

Υ̂(k, µ) = (3)

ŜIR(k, µ)F (Γ̂dd(k, µ)) + F (Γ̂nn(k, µ))

ŜIR(k, µ)[1− F (Γ̂dd(k, µ))] + [1− F (Γ̂nn(k, µ))]
,

where

ŜIR(k, µ) = Ŝdd(k, µ)/Ŝnn(k, µ) , (4)

F (Γ̂∗(k, µ)) = w
H
Γ̂∗(k, µ)w , (5)

with Γ̂∗(k, µ) , ∗ ∈ {dd, nn}. Γ̂∗(k, µ) , ∗ ∈ {dd, nn}
corresponds to the PSD of the desired signal and of the
interference at the beamformer output normalized by

Ŝdd(k, µ) and by Ŝnn(k, µ), respectively. ŜIR(k, µ) is
the unbiased estimate of the bin-wise SIR, SIR(k, µ),

at the sensors. Equation (3) shows that Υ̂(k, µ) is an
estimate of the bin-wise SIR at the sensors which is
biased by functions of the spatial coherence matrices
w.r.t. the desired signal and w.r.t. interference. (3)

requires Γ̂dd(k, µ) 6= Γ̂nn(k, µ) so that the dependency

of Υ̂(k, µ) on ŜIR(k, µ) does not cancel out.

2.2. Bias correction using spatial coherence

Solving (3) for ŜIR(k, µ) leads to

ŜIR(k, µ) =
F (Γ̂nn(k, µ)) · [Υ̂(k, µ) + 1]− Υ̂(k, µ)

Υ̂(k, µ)− F (Γ̂dd(k, µ)) · [Υ̂(k, µ) + 1]
.

(6)

We see that an unbiased estimate of the SIR can
be calculated with (6) for known but arbitrary

F (Γ̂dd(k, µ)) 6= F (Γ̂nn(k, µ)). We thus have reduced
the problem of the estimation of the SIR to the estima-
tion of spatial coherence matrices. For non-stationary
mixtures, the estimation of spatial coherence func-
tions is advantageous compared to a direct estimation
of the SIR, since, generally, PSDs of speech and au-
dio signals are strongly time-varying relative to slowly
time-varying spatial coherence functions. The PSDs
often decay to zero in individual DFT bins, so that

2In [3], the ratio of the variance of the output signal of
a fixed beamformer and of a complementary fixed beam-
former is introduced for controlling the adaptation of a
time-domain adaptive beamformer.

F (Γ̂dd(k, µ)) and F (Γ̂nn(k, µ)) can be estimated dur-
ing inactivity of the interference and of the desired
signal in individual DFT bins, respectively. This re-
quires a double-talk detection mechanism with distinc-
tion between presence of only the desired signal and
only interference.

2.3. Spatial activity detection

For detecting presence of only desired signal and pres-
ence of only interference, we use the ratio Υ̂(k, µ). Al-

though Υ̂(k, µ) is a biased estimate of the SIR, Υ̂(k, µ)
increases (decreases) with increasing (decreasing) SIR.

Thus, if Υ̂(k, µ) is maximum (minimum), it is very
likely that only desired signal (interference) is present.

By tracking the maxima (minima) of Υ̂(k, µ) over time
with methods presented in, e.g., [2], lower and upper

thresholds Υ̂l(k, µ) and Υ̂n(k, µ) can be determined to
distinguish between presence of desired signal alone
and interference alone. We introduce the PSD of the
beamformer output signal normalized to the average
PSD of the sensor signals as

Ψ̂(k, µ) =
Ŝyy(k, µ)

Ŝxx(k, µ)
=
wH Ŝxx(k, µ)w

Ŝxx(k, µ)
. (7)

Ψ̂(k, µ) is equal to F (Γ̂dd(k, µ)) and F (Γ̂nn(k, µ))
for presence of only the desired signal and only
interference, respectively. We thus can determine
F (Γ̂dd(k, µ)) and F (Γ̂nn(k, µ)) according to

F (Γ̂dd(k, µ)) = Ψ̂(k, µ)
∣∣∣
Υ̂(k,µ)≥Υ̂d(k,µ)

, (8a)

F (Γ̂nn(k, µ)) = Ψ̂(k, µ)
∣∣∣
Υ̂(k,µ)≤Υ̂n(k,µ)

. (8b)

Usage of (8a), (8b) in (6) finally yields the estimate

ŜIR(k, µ). This procedure can also be used for esti-

mating the spatial coherence matrices Γ̂dd(k, µ) and

Γ̂nn(k, µ) explicitely.

2.4. Statistical evaluation

For analyzing the variance σ2
ŜIR

(k, µ) of the pro-
posed SIR estimator, we assume wide-sense stationary
discrete-time sensor signals xm(n). Assuming further-

more that Υ̂(k, µ) := Υ(µ) is known, then, ŜIR(k, µ)

is the function of two random variables F (Γ̂dd(k, µ))

and F (Γ̂nn(k, µ)) with variances σ2
F (Γ̂dd)

(k, µ) and

σ2
F (Γ̂nn)

(k, µ), respectively. With statistical inde-

pendence of the random variables F (Γ̂dd(k, µ)) and

F (Γ̂nn(k, µ)), a first-order approximation of the vari-
ance σ2

ŜIR
(k, µ) can thus be derived as

σ2
ŜIR

(k, µ) ' (9)
(

SIR2(k, µ) + SIR(k, µ)

F (Γnn(µ))− F (Γdd(µ))

)2

· σ2
F (Γ̂dd)

(k, µ)

+

(
SIR(k, µ) + 1

F (Γnn(µ))− F (Γdd(µ))

)2

· σ2
F (Γ̂nn)

(k, µ) .

Dividing both sides by SIR2(k, µ), it can be seen that
the variance of the estimate of the SIR normalized to
SIR2(k, µ) increases with the power of 2 of the true
sensor SIR with increasing and decreasing SIRs and



increases linearly with the variance of the coherence
estimates.

Next, we have to compute the variances
σ2
F (Γ̂dd)

(k, µ) and σ2
F (Γ̂nn)

(k, µ). For that, we

exclude double-talk of the desired signal and in-
terference, which allows to neglect the activity
detector. F (Γ̂dd(k, µ)) and F (Γ̂nn(k, µ)) can then be
estimated continuously over time and are equivalent
to Ψ̂(k, µ) (with different PSDs and different spatial
coherence matrices). The statistical properties of

Γ̂∗(k, µ) , ∗ ∈ {dd, nn} and Ψ̂(k, µ) are thus equiva-
lent. Since a distinction between the desired signal
and interference is not necessary for the following
derivations, we give the equations as a function of
the discrete-time sensor signals xm(n) and use the
statistical characteristics for the desired signal and
for the interference if necessary.

We assume a deterministic weight vector w, and
we model the elements Ŝxm1xm2

(k, µ) of the CPSD

matrix Ŝxx(k, µ) as random variables. For specifying

the covariance between two CPSDs Ŝxm1xm2
(k, µ) and

Ŝxm3xm4
(k, µ), the discrete-time sensor signals xm(n)

should be stationary random processes with asymp-
totic (n1−n2 → ±∞) mutual statistical independence.
For N → ∞ and µ 6= {0,±N/2}, the covariance be-
tween the recursively averaged second-order windowed
periodograms Ŝxm1xm2

(k, µ) and Ŝxm3xm4
(k, µ) can

then be derived with B(k) = (βkS − 1)/(βS − 1) as

CŜxm1xm2
Ŝxm3xm4

(k, µ) =

1

B(k)
Sxm1xm3

(µ)Sxm2xm4
(µ) . (10)

CŜxm1xm2
Ŝxm3xm4

(k, µ) corresponds to the covariance

of the second-order windowed periodograms normal-
ized by B(k). The normalization factor B(k) can be
interpreted as the effective memory for averaging the
second-order windowed periodograms [4].

A first-order approximation of the variance σ2F (k, µ)

of Γ̂∗(k, µ) , ∗ ∈ {dd, nn} is found by interpreting

Ψ̂(k, µ) after (7) as a function of the complex mul-

tivariate random variable Ŝxx(k, µ). By stacking the

columns of theM×M matrix Ŝxx(k, µ) into anM2×1
vector ŝxx(k, µ), we find

σ2F (k, µ)'

(
∂Ψ̂(k, µ)

∂ŝxx(k, µ)

)T
Cŝxxŝxx(k, µ)

(
∂Ψ̂(k, µ)

∂ŝxx(k, µ)

)∗
,

(11)

where theM2×M2 matrix Cŝxxŝxx(k, µ) is the covari-
ance matrix w.r.t. the complex multivariate random
variable ŝxx(k, µ) with elements (10).

Finally, the variance σ2
ŜIR

(k, µ) is obtained by using
(11) in (9) for the given wave-field characteristics of
the desired signal and of the interference. An exam-
ple of the normalized variance σ2

ŜIR
(k, µ)/SIR2(k, µ)

is given in Figure 2 for an office room with reverbera-
tion time T60 = 300 ms and for the setup described in
Section 3 with βS ∈ {0.3, 0.7} and with the desired sig-
nal arriving from θd ∈ {π/2, 17π/36} with broadside
steering direction π/2. In Figure 2 (a) and (b), the
normalized variance is shown over the true sensor SIR
for f ' 1.5 kHz and over frequency for different sensor

SIRs (θd = 17π/36, βS = 0.7, k → ∞), respectively.
Most importantly, the variance has a minimum around
SIR(µ) = 0 dB, where the SIR estimation is most cru-
cial for many applications [1]. σ2

ŜIR
(k, µ) is only little

influenced by the exponential forgetting factor and by
steering mismatch, as expected from (9), (10), and
(11). This is especially important for non-stationary
signals, where βS is small for tracking changes of the
PSD, and where mismatch of the steering direction
cannot be prevented.
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Figure 2: Statistical evaluation.

2.5. Robustness improvement

Section 2.4 showed that the variance of the SIR es-
timate increases with decreasing and increasing SIR.
For improving the accuracy of the SIR estimation, we
provide several measures. First, we have to prevent

ŜIR(k, µ) < 0. From (6), we see that ŜIR(k, µ) < 0, if
one of the following two conditions is fulfilled:

Υ̂(k, µ) >
F (Γ̂dd(k, µ))

1− F (Γ̂dd(k, µ))
, (12)

Υ̂(k, µ) <
F (Γ̂nn(k, µ))

1− F (Γ̂nn(k, µ))
, (13)

where we assume that the suppression of the interfer-
ence of the beamformer is greater than the cancella-

tion of the desired signal. For forcing ŜIR(k, µ) >

0, we solve (12) and (13) for F (Γ̂dd(k, µ)) and

F (Γ̂nn(k, µ)), respectively, and we set the equality
sign. We obtain

F (Γ̂dd(k, µ)) =
Υ̂(k, µ)

Υ̂(k, µ) + 1
, (14)

F (Γ̂nn(k, µ)) =
Υ̂(k, µ)

Υ̂(k, µ) + 1
, (15)

respectively. Equation (6) is then modified by

replacing the present values of F (Γ̂dd(k, µ)) and

F (Γ̂nn(k, µ)) with the right sides of (14) and (15)
whenever the conditions (12) and (13) are fulfilled,
respectively.

Second, the determination of the spatial coherence
functions while Υ̂(k, µ) is maximum or minimum may

lead to over- or underestimation of F (Γ̂dd(k, µ)) and

F (Γ̂nn(k, µ)), respectively. This effect can be reduced
by applying a median filter of low order (3 . . . 5) to

Υ̂(k, µ), which gives Ῡ(k, µ), and by determining the

thresholds Υ̂d(k, µ) and Υ̂n(k, µ) from Ῡ(k, µ).
Third, if the conditions

|F (Γ̂dd(k − 1, µ))− Ψ̂(k, µ)| ≤ ∆F , (16)

|F (Γ̂nn(k − 1, µ))− Ψ̂(k, µ)| ≤ ∆F , (17)



with typically 0.01 < ∆F < 0.1, are fulfilled, it is very
likely that only desired signal or only interference is
active although the activity detector detects double-
talk. In order to allow tracking of such small variations
of Ψ̂(k, µ), F (Γ̂dd(k, µ)) and F (Γ̂nn(k, µ)) are always
updated if condition (16) or (17) are met, respectively.

Table 1 summarizes the spatial estimation of the
average SIR at the sensors for non-stationary signals
for DFT bin µ. In addition to the robustness im-
provements described previously, the instantaneous es-
timates of the spatial coherence terms are recursively
averaged with a forgetting factor 0 < βF < 1. The
parameters slope max and rise min allow an immedi-
ate update of Υ̂d(k, µ) and Υ̂n(k, µ) with the present
value of Ῡ(k, µ) within a certain interval, respectively.
The parameter D defines the length of the delay lines
Ῡd(k, µ) and Ῡn(k, µ) in which the maxima and min-
ima of Ῡ(k, µ) are tracked.

1 Compute Ŝyy(k, µ), Ŝȳȳ(k, µ), and Ŝxx(k, µ)

2 Compute Υ̂(k, µ) = Ŝyy(k, µ)/Ŝȳȳ(k, µ)

3 Compute Ῡ(k, µ) = median3{Υ̂(k, µ)}

4 Compute Ψ̂(k, µ)

5 IF Ῡ(k, µ) > Υ̂d(k, µ)/slope max

Υ̂d(k, µ) = Ῡ(k, µ)
Replace all stored values of Ῡd(k − i, µ),

i = 1, 2, . . . , D, by Υ̂d(k, µ)
ELSE

Find Υ̂d(k, µ), the maximum of Ῡd(k − i, µ), i = 1, 2, . . . , D
Ῡd(k, µ) = Ῡ(k, µ)

6 IF (Υ̂(k, µ) ≥ Υ0,dΥ̂d(k − 1, µ)

OR |Ψ̂(k, µ) − F (Γ̂dd(k − 1, µ))| ≤ ∆F )

update = Ψ̂(k, µ)

ELSE update = F (Γ̂dd(k − 1, µ))

IF Υ̂(k, µ) > update/(1 − update)

update = Υ̂(k, µ)/(Υ̂(k, µ) + 1)

7 F (Γ̂dd(k, µ)) = βF F (Γ̂dd(k − 1, µ)) + (1 − βF ) · update

8 IF Ῡ(k, µ) < Υ̂n(k, µ) · rise max

Υ̂n(k, µ) = Ῡ(k, µ)
Replace all stored values of Ῡn(k − i, µ),

i = 1, 2, . . . , D, by Υ̂n(k, µ)
ELSE

Find Υ̂n(k, µ), the minimum of Ῡn(k − i, µ), i = 1, 2, . . . , D
Ῡn(k, µ) = Ῡ(k, µ)

9 IF (Υ̂(k, µ) ≤ Υ0,nΥ̂n(k − 1, µ)

OR |Ψ̂(k, µ) − F (Γ̂nn(k − 1, µ))| ≤ ∆F )

update = Ψ̂(k, µ)

ELSE update = F (Γ̂nn(k − 1, µ))

10 IF Υ̂(k, µ) < update/(1 − update)

update = Υ̂(k, µ)/(Υ̂(k, µ) + 1)

11 F (Γ̂nn(k, µ)) = βF F (Γ̂nn(k − 1, µ)) + (1 − βF ) · update

12 Compute ŜIR(k, µ)

13 Store F (Γ̂dd(k, µ)), F (Γ̂nn(k, µ)), Ῡd(k, µ),

Υ̂d(k, µ), Ῡn(k, µ), and Υ̂n(k, µ)
14 Increment k

Table 1: Summary of the algorithm.

3. EXPERIMENTAL EVALUATION

This algorithm was applied to estimate the SIR of
competing male speech signals at an array withM = 8
sensors with sensor spacing d = 4 cm in an office
room with T60 = 300 ms reverberation time. The de-
sired source and the interfering source are located in
broadside direction and in endfire direction, respec-
tively, at a distance of 60 cm to the array center.
Figure 1 (a) shows the signal of the desired source
d(t) and the interference n(t) over time t. In Fig-

ure 1 (b), the decision variable Υ̂(k, µ) (solid) and

the lower and upper thresholds Υ̂d(k, µ) (dashed)

and Υ̂n(k, µ) (dash-dotted) are depicted for frequency

f ' 1 kHz. The estimated SIR, ŜIR(k, µ) (bold line)
is compared to the true SIR (narrow line), in Figure 1
(d) for the same frequency. Finally, Figure 1 (e) illus-

trates ŜIR(k, µ) (bold line), SIR(k, µ) (narrow line),

and Υ̂(k, µ) (dashed line) averaged over the frequency
range 300 Hz - 5 kHz. We see that the SIR can be
accurately estimated, while Υ̂(k, µ) only provides a

rough estimate of the SIR.
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Figure 3: Procedure of the SIR estimation (Sampling
rate fs = 12 kHz, D = 96, βF = 0.3, βS = 0.34,
slope max = rise min = 1.25, Υ0,d = 0.89, Υ0,n =
1.12, ∆F = 0.045).

4. CONCLUSIONS

In this paper, we presented a new method for estimat-
ing the DFT-bin-wise SIR of non-stationary wideband
signals. Compared to traditional approaches, our al-
gorithm allows strongly time-varying PSDs. The spa-
tial coherence matrices w.r.t. the desired signal and
w.r.t. interference must be slowly time-varying rel-
ative to the PSDs. The robustness of our approach
was illustrated by experiments in a real reverberant
environment.
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