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ABSTRACT

An algorithm for detection and cancellation of sidetone
oscillations in mobile phones is presented. The sidetone sig-
nal is represented by a4th order LPC polynomial, whose
root structure is analysed by a computationally efficient two-
stage approach. In difference to LMS based adaptive filters
this approach offers a fast and reliable detection of evolving
oscillations. A notch filter with small bandwidth is used for
cancellation and therefore almost no distortion is introduced
to the speech signal.

1. INTRODUCTION

Design of the electro-acoustic parameters defining the side-
tone path in modern mobiles phones has become a critical
issue during the last years. Reasons are decreasing enclo-
sure sizes, low-cost acoustic and mechanical components,
and the usage of acoustic resonators to increase earpiece
performance. As it is shown in Fig.1, an electro-acoustic
feedback loop may evolve. One part of this loop is intended
and defined by the sidetone path: The microphone signal,
after some filtering and attenuation, is fed back to the loud-
speaker path to provide the user with a convenient percep-
tion of his own voice.

The feedback loop may be closed by mechanical cou-
pling between earpiece and microphone via the enclosure,
mainly if these devices are mounted on the same side of the
enclosure. In addition acoustic coupling may be caused oc-
casionally by some users, who simultaneously cover both
devices with their hand. This can result in annoying whist-
ling, even during a phone call and - in the extreme case -
damage the hearing capability of the user.

The generated resonances are dependent on the prop-
erties of the feedback loop and the resonance frequencies
are varying in time, therefore an adaptive algorithm has to
be used. One challenge is the detection of evolving oscil-
lations during the presence of a concurrent speech signal.
The other challenge is to provide a fast algorithm, which is
able to detect and cancel oscillations before they are audi-
ble. In addition, the detected oscillations must be cancelled
with only small distortion of the speech signal.

Adaptive cancellation of feedback signals is also used
in the domain of hearing aids. It is known that wideband
adaptive algorithms like the LMS cause distortions because
input and output signals of the adaptive filter are mainly
speech signals and therefore strongly correlated, e.g. [1],
[2]. Distortions typically occur at low frequencies, where
most of the speech energy is concentrated. In the same man-
ner LMS-controlled adaptive notch filters tend to concen-
trate their notch frequencies at regions of high energy. For
speech these are the formant regions, whereas oscillations
with higher frequencies might not be detected. A drawback
of all LMS-style algorithms is their slow convergence.
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Fig. 1. Digital sidetone path in mobile phones

Therefore a different approach is proposed in this pa-
per. It is based on a4th order LPC analysis of the sidetone
signal which is able to separate speech poles (formant fre-
quencies) and oscillation poles with resonance frequencies
above 2 kHz. A two-stage algorithm is chosen for the anal-
ysis of the root structure of the LPC polynomial. In a first
step the LSF (Line Spectral Frequency) representation of
the LPC polynomial is computed and evaluated [3, 4]. In
a second step the pole frequency of critical poles (possibil-
ity of oscillation) is used as parameter to compute a start
polynomial for the Bairstow Algorithm, which provides a
robust and efficient method for the computation of the LPC
roots [5, 6]. The position of these roots in the z-plane is



used for the detection and cancellation of oscillations. If
they appear in the sector marked as critical in Fig.2, the
pole frequency of these roots is used as center frequency of
an adaptive notch filter, which can be driven into the sig-
nal path and moved out again. As it is shown in Fig.1 the
adaptive notch filter is implemented as a standard2nd or-
der biquad filter. The notch filter transfer function is used
in a representation, which allows a description by the pa-
rameters pole frequency, gain, and 3dB-bandwidth [7]. The
coefficients of this filter are controlled by the analysis and
detection algorithm, which is introduced in the next chapter.

2. ALGORITHM DESCRIPTION

2.1. Basic detection principle

The algorithm is based on a4th order LPC analysis of the
sidetone signal. The short-term sythesis filter is given by

S(z) =
1

A(z)
=

1∑4
i=0 aiz4−i

. (1)

The4th order polynomialA(z) has real coefficients and can
be factorized into 4 root factors. The roots are either real
roots or conjugate complex root pairs. Only the complex
roots are of interest as the relevant frequencies are situated
around 1 kHz (speech formant frequencies) or above 2 kHz
(oscillation frequencies). By computing the pole distribu-
tion of the polynomialS(z) a statement about the character
of the observed signal can be made. If only speech com-
ponents are present, one or both of the conjugate complex
pole pairs are moving to the formant frequencies. If an os-
cillation is evolving, one pole pair moves to the oscillation
frequency even during speech sequences, because a sine os-
cillation can exactly be modelled by one conjugate complex
pole pair. The other pair stays at the formant frequencies.
Thus speech and oscillation can be separated by looking at
the location of the LPC poles in the z-plane.

2.2. LPC Analysis

The LPC polynomialA(z) is computed by the Levinson-
Durbin Recursion as it is described in the GSM standards
for the EFR or AMR speech codecs, e.g [4]. The autocor-
relation coefficients required for the Levinson-Durbin Re-
cursion are computed over a block of samples. To obtain
smoothed values, the autocorrelation coefficients of the pre-
vious block are considered recursively:

Rxx(i)new =
∑

k

x(k)x(k + i), i = 0 . . . 4 (2)

Rxx(i) = αRxx(i) + (1− α)Rxx(i)new

k = 0 . . . N − 1,

whereN is the block length andα the recursion coefficient.

2.3. Computation of LPC roots

There are several methods to compute the roots of a4th or-
der polynomial exactly. As most of them use computation-
ally complex matrix inversions or eigenvalue approaches
neither is suited for a real-time implementation. Therefore
a two-step approach is proposed: First of all the LPC repre-
sentation is transformed to a LSF representation [3, 4]. The
results of the LSF polynomial evaluation are used as input
values for the Bairstow Algorithm [5, 6], which is a robust
and efficient method to find the quadratic factors for the
complex conjugate roots of a polynomial with real-valued
coefficients. As we are interested in one complex conju-
gate pole pair only, which additionally has to be situated in
a well-defined sector of the z-plane, we can pre-select the
output of the LSF root finding algorithm, compute a2nd

order polynomial corresponding to a critical LSF root pair,
and use this polynomial as an input to the Bairstow Algo-
rithm. The main drawback of the Bairstow Algorithm, the
difficulty to find good initial approximations [6], is circum-
vented by this approach.

2.3.1. Line Spectral Frequencies

A symmetric polynomialF1(z) and an antisymmetric poly-
nomialF2(z) are formed from the LPC polynomialA(z) by
adding and subtracting the time-reversed system function:

F1(z) =
A(z) + z−5A(z−1)

1 + z−1
(3)

F2(z) =
A(z)− z−5A(z−1)

1− z−1

The polynomials have fix zeros atz = −1 andz = 1, re-
spectively. As they are not of interest, they are removed by
polynomial division, as it is shown in (3). This results in

F1(z) = z−4 + f11z
−3 + f12z

−2 + f13z
−1 + 1

F2(z) = z−4 + f21z
−3 + f22z

−2 + f23z
−1 + 1 ,

with

f11 = a1 + a4 − 1
f12 = −a1 + a2 + a3 − a4 + 1
f13 = f11 (4)

f21 = a1 − a4 + 1
f22 = a1 + a2 − a3 − a4 + 1
f23 = f21

by comparison of coefficients.

Each polynomial is now evaluated on the unit circle. By
extracting the linear-phase factor2e−j2ω and with the map-



pingx = coskω each polynomial can be written as Cheby-
shev expansion [3]:

Fi(ejω) = 2e−j2ω
2∑

k=0

λikcoskω (5)

i = 1, 2 ,

resulting in the Chebyshev polynomials

CF1(x) =
1
2
f12 + f11x + 2x2 − 1 (6)

CF2(x) =
1
2
f22 + f21x + 2x2 − 1.

Each of these polynomials has 2 zeros on the upper half of
the unit circle and it can be shown that they alternate each
other, see Fig.2. The polynomials are evaluated using the
algorithm in [3], which computes the results of (6), alternat-
ing for CF1(x) and forCF2(x) atL equidistant points of the
unit circle (ω = 0, π

L , 2π
L , . . . , (L−1)π

L ), and looks for sign
changes. The final zero position is calculated by interpola-
tion. Four root pairs on the unit circle are the result of the
LSF algorithm. It is known [3] that a pair of LSF roots tends
to enclose the corresponding LPC roots. It can be seen from
Fig. 2 that this is true for the two oscillation poles above the
frequency threshold of 2.5 kHz (8 kHz sampling frequency
assumed), but also for the two ’formant poles’ at low fre-
quencies.

The phase angles of the two LSF roots above the fre-
quency threshold shall be namedφLSF,1 andφLSF,2, and
the start value for the LPC root evaluation is written as
zs
LPC = rs

LPCejφs
LP C . Only the phase angles of the LSF

roots in the upper half of the unit circle are considered for
the computation ofφs

LPC .
As start polynomial for the Bairstow Algorithm the qua-

dratic factorr(z) = (z−ejφ)(z−e−jφ) = z2−2zcosφ+1
is computed with

φ = φs
LPC =

φLSF,1 + φLSF,2

2
. (7)

Thus the mean value of the two LSF phase angles is taken
(dotted line in Fig.2). In principle every value0<rs

LPC≤1
could be considered as start value forrs

LPC . As we want to
detect sine oscillations the best choice isrs

LPC = 1.

2.3.2. Bairstow Algorithm

Given the polynomialA(z) =
∑4

i=0 aiz
4−i, and the quadratic

factor r(z) = z2 − pz − q, with p = 2cosφ andq = −1
from the LSF evaluation, we can write [6]:

A(z) = (z2−pz−q)(b0z
2+b1z+b2)+b3(z − p) + b4︸ ︷︷ ︸ (8)

remainder
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Fig. 2. Basic detection principle: Evaluation of LPC root
structure using the analogy between LPC roots (stars in the
z-plane) and LSF zeros (diamonds and circles on the unit
circle)

The polynomial is represented as multiplication of the known
quadratic start factor, an unknown quadratic factor, and a
remainder term. This procedure is called synthetic division.
By multiplying the quadratic factors on the right side of (8)
and comparing the coefficients to the polynomial on the left
side we obtain:

b0 = a0

b1 = a1 + pb0

b2 = a2 + pb1 + qb0 (9)

b3 = a3 + pb2 + qb1

b4 = a4 + pb3 + qb2,

or, recursively,

bi = ai + pbi−1 + qbi−2 (10)

i = 0 . . . 4, b−2 = b−1 = 0.

It can be shown, that ifb0z
2 + b1z + b2 is to be another

quadratic factor,b3 andb4 have to be equal to zero. Both
coefficients are non-linear functions ofp andq:

b3(p, q) = 0 (11)

b4(p, q) = 0

The application of the Newton-Raphson procedure in this
context to solve the system of non-linear equations (11) is
called Bairstow Method [6]. Applying the partial deriva-
tives with respect to p and q and writingb3 andb4 as a1st



order Taylor series expansion, we obtain:

b0
3 = b3 +

∂b3

∂p
∆p +

∂b3

∂q
∆q (12)

b0
4 = b4 +

∂b4

∂p
∆p +

∂b4

∂q
∆q

From (10) we can derive

∂bi

∂p
= p

∂bi−1

∂p
+ q

∂bi−2

∂p
(13)

∂bi

∂q
= p

∂bi−1

∂q
+ q

∂bi−2

∂q
.

By definingc1 = ∂b2
∂p = ∂b3

∂q , c2 = ∂b3
∂p = ∂b4

∂q , andc3 =
∂b4
∂p , we obtain:

b0
3 = b3 + c2∆p + c1∆q = 0 (14)

b0
4 = b4 + c3∆p + c2∆q = 0

This can be written as a system of linear equations and
solved for∆p and∆q:(

c2 c1

c3 c2

) (
∆p
∆q

)
=

(
−b3

−b4

)
(15)

The algorithm is working as an iteration until|b3| and|b4|
are below a defined thresholdεthr:

1. start values:p(0) = 2cosφ, q(0) = −1
b0 = a0 (const.)

2. b1 = a1 + p(n)b0

b2 = a2 + p(n)b1 + q(n)b0

b3 = a3 + p(n)b2 + q(n)b1

b4 = a4 + p(n)b3 + q(n)b2

c1 = b1 + p(n)b0

c2 = b2 + p(n)c1 + q(n)c0

c3 = b3 + p(n)c2 + q(n)c1

while |b3| ≥ εthr or |b4| ≥ εthr, we get from (15):

3. ∆p = c1b4−c2b3
c2
2−c1c3

∆q = c3b3−c2b4
c2
2−c1c3

p(n+1) = p(n) + ∆p
q(n+1) = q(n) + ∆q

n = n + 1,
goto 2.

2.4. Discussion

To obtain a good separation between speech formant poles
and oscillation poles the frequency threshold for oscillation
detection should be greater than 2 kHz. Problems can arise
in unvoiced speech phrases, because here the speech signal
behaves like noise and this can cause wrong detections in

some cases. The same is true for noisy speech signals. To
circumvent this drawback an energy threshold can be intro-
duced. Only if the signal energy per speech frame exceeds
this threshold, the algorithm is calculated.

In general there is no mathematical proof, that the dis-
tance between two LSF zeros is a measure for the quality
of the corresponding LPC pole. However, heuristic experi-
ments show, that a small distance between two adjacent LSF
zeros in combination with a frequency threshold is not a
necessary, but most of the time a sufficient decision crite-
rion for the detection of evolving oscillations in speech sig-
nals. If the detection criteria are relaxed and some wrong
detections (sine oscillations detected, when no oscillation is
present) are allowed, the algorithm gives also satisfying re-
sults by just evaluating the LSF root structure. In this case
the mean frequency of two critical LSF roots (7) is taken
as pole frequency for the notch filter and the Bairstow Al-
gorithm is skipped, which means a further saving of com-
putation power. If the 3dB-bandwidth of the notch filter is
kept small and the time constants for driving the filter into
and out of the signal path are chosen thoroughly, no audible
distortions will be recognized.

3. CONCLUSION

An algorithm for the detection and cancellation of oscilla-
tions in speech signals has been introduced. By the com-
bination of a4th order LPC analysis and a computationally
efficient two-stage approach for the analysis of the LPC root
structure oscillations can be detected early and reliably.
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