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ABSTRACT
We propose a new two-stage blind separation and deconvolution
(BSD) algorithm for a convolutive mixture of speech, in which a
new Single-Input Multiple-Output (SIMO)-model-based ICA (SIMO-
ICA) and blind multichannel inverse filtering are combined. SIMO-
ICA can separate the mixed signals, not into monaural source sig-
nals but into SIMO-model-based signals from independent sources
as they are at the microphones. After SIMO-ICA, a simple blind
deconvolution technique for the SIMO model can be applied even
when each source signal is temporally correlated. The simulation
results reveal that the proposed method can successfully achieve
the separation and deconvolution for a convolutive mixture of speech.

1. INTRODUCTION

Blind separation and deconvolution (BSD) of sources is an ap-
proach taken to estimate original source signals using only the in-
formation of mixed signals observed in each input channel. In the
BSD framework, not only the source separation but also the decon-
volution of the transmission channel characteristics are considered.
For the BSD based on independent component analysis (ICA), var-
ious methods have been proposed to deal with the separation and
deconvolution for the convolutive mixture of independently, iden-
tically distributed (i.i.d.) source signals [1, 2]. These BSD meth-
ods require the specific assumptions that the source signals are mu-
tually independent and each source signal is also temporally inde-
pendent. However, the latter assumption does not hold in many
practical acoustic mixtures of sound signals such as speech. The
application of the conventional ICA-based BSD to speech often
yields the negative results, e.g., the separated speech is adversely
decorrelated and whitened. In order to solve the problem, we
have proposed a novel BSD approach that combines information-
geometry theory and multichannel signal processing [3]. In this
approach, the BSD problem is resolved into two stages: new blind
separation technique using a Single-Input Multiple-Output (SIMO)-
model-based ICA (SIMO-ICA) and the deconvolution in the SIMO-
model framework.

In the previous report[3], we dealt with real-world data, but
it is hard to say that we could make clear whether the proposed
BSD can obtain exact source signals or not. With real-world data,
it is difficult to evaluate the performance of the system accurately
due to background noise, too long reverberation, and so on. In
this paper, we give the objective indication of the performance in
the first stage, and properly evaluate the performance of the pro-
posed method using the artificial transmission channels. In ad-
dition, we show that the proposed method can be regarded as a
square FIR-type filter matrix, and we discuss the channel identifi-
ability of such a system. The simulation results reveal that the pro-
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posed method can achieve the separation and deconvolution for a
convolutive mixture of speech when we set the SIMO-ICA’s filter
length sufficiently long.

2. MIXING PROCESS AND CONVENTIONAL BSD

In this study, the number of microphones isK and the number
of multiple sound sources isL. The observed signals in which
multiple source signals are mixed linearly are expressed as

x(t) =

N−1X
n=0

a(n)s(t− n) = A(z)s(t), (1)

wheres(t) = [s1(t), · · · , sL(t)]T is the source signal vector, and
x(t) = [x1(t), · · · , xK(t)]T is the observed signal vector. Also,
a(n) is the mixing filter matrix with the length ofN , andA(z) is
the z-transform ofa(n); these are given as

a(n) = [akl(n)]kl, (2)

A(z) = [Akl(z)]kl =

"
N−1X
n=0

akl(n)z−n

#
kl

, (3)

wherez−1 is used as the unit-delay operator, i.e.,z−n · x(t) =
x(t − n), akl(n) is the impulse response between thek-th mi-
crophone and thel-th sound source, and[X]ij denotes the matrix
which includes the elementX in thei-th row and thej-th column.
Hereafter, we only deal with the case ofK = L in this paper.

In the time-domain ICA (TDICA), the separated signaly(t) =
[y1(t), · · · , yL(t)]T is expressed as

y(t) =

D−1X
n=0

w(n)x(t− n) = W (z)x(t), (4)

wherew(n) is the separation filter matrix,W (z) is the z-transform
of w(n), andD is the filter length ofw(n). In the ICA-based
BSD framework assuming i.i.d. sources, Amari [1] proposed the
holonomic TDICA algorithm which optimizes the separation fil-
ter by minimizing the Kullback-Leibler divergence between the
joint probability density function (PDF) ofy(t) and the product of
marginal PDFs ofyl(t). The iterative learning rule is given by

w[j+1](n) = w[j](n) + η

D−1X
d=0

(
Iδ(n− d)

−
D
'(y[j](t))y[j](t− n + d)T

E
t

)
·w[j](d),(5)

whereη is the step-size parameter, the superscript[j] is used to
express the value of thej-th step in the iterations,〈·〉t denotes the



time-averaging operator, andI is the identity matrix. δ(n) is a
delta function, whereδ(0) = 1 andδ(n) = 0 (n 6= 0). '(·) is the
nonlinear vector function.

3. PROPOSED TWO-STAGE BSD ALGORITHM

In this section, we propose a new two-stage BSD algorithm com-
bining SIMO-ICA and blind multichannel inverse filtering. In
the proposed method, the separation/deconvolution problems can
be solved efficiently using the following reasonable assumptions.
(A1) The assumption of the mutual independence among the acous-
tic sound sources usually holds, and consequently, this can be used
in the SIMO-ICA-based separation.(A2) The temporal-correlation
property of the source signals and the nonminimum phase property
of the mixing system can be taken into account in the blind multi-
channel inverse filtering for the SIMO model. The detailed process
using the proposed algorithm is as follows.

3.1. First stage: SIMO-ICA for source separation

In this stage, a new blind separation method using SIMO-ICA is
conducted. SIMO-ICA consists of multiple ICA parts and afidelity
controller, and each ICA runs in parallel under fidelity control of
the entire separation system . The separated signals of thel-th ICA
in SIMO-ICA are defined by

yICAl(t) = [y
(l)
k (t)]k1 =

D−1X
n=0

wICAl(n)x(t− n)

= W ICAl(z)x(t), (6)

wherewICAl(n) is the separation filter matrix in thel-th ICA,
andW ICAl(z) is the z-transform ofwICAl(n). Regarding the
fidelity controller, we introduce the following new cost function to
be minimized,D

‖
LX

l=1

yICAl(t)− x(t−D/2) ‖2
E

t
, (7)

where‖ x ‖ is the Euclidean norm of vectorx. Using (6) and (7),
we can obtain the appropriate separated signals and maintain their
spatial qualities as follows.
Theorem: If the independent sound sources are separated by (6),
and simultaneously (7) is minimized to be zero, then the output
signals converge on unique solutions, up to the permutation, as

yICAl(t) = diag
h
A(z)PT

l

i
P ls(t−D/2), (8)

whereP l (l = 1, ..., L) are exclusively-selected permutation
matrices which satisfy

LX
l=1

P l = [1]ij . (9)

As for the proof of theorem, we have given in [3].
Obviously the solutions given by (8) provide necessary and

sufficient SIMO components,Akl(z)sl(t − D/2), for eachl-th
source. There, however, is an arbitrariness in a selection ofP l.
For example, one possible selection is set permutation matrices,
P l to following equation,

P l =
�
δim(k,l)

�
ki

, (10)

whereδij is Kronecker’s delta function, and

m(k, l) =

�
k + l − 1 (k + l − 1 ≤ L)

k + l − 1− L (k + l − 1 > L)
. (11)

In this case, (8) yields

yICAl(t) =
�
Akm(k,l)(z)sm(k,l)(t−D/2)

�
k1

. (12)

In order to obtain (8), the gradient of (7) with respect towICAl(n)
should be added to the iterative learning rule of the separation fil-
ter. The natural gradient [1] of (7) is given as(

∂

∂wICAl(n)

D
‖

LX
l=1

yICAl(t)− x(t−D/2) ‖2
E

t

)
·W ICAl(z

−1)TW ICAl(z)

= 2

D−1X
d=0

D� LX
l=1

yICAl(t)− x(t−D/2)
�

·yICAl(t − n + d)T
E

t
·wICAl(d). (13)

By combining (13) with the nonholonomic TDICA [4], we can
obtain a new iterative algorithm in thel-th ICA of SIMO-ICA as

w[j+1 ]
ICAl (n)

= w[j ]
ICAl(n)

− α

D−1X
d=0

(
off-diag

D
'
�
y[j]

ICAl(t)
�
y[j]

ICAl(t− n + d)T
E

t

+ β
D� LX

l=1

y[j]
ICAl(t)− x(t−D/2)

�
·y[j]

ICAl(t− n + d)T
E

t

)
·w[j ]

ICAl(d), (14)

whereα andβ are the step-size parameters;α is for the control of
the total update quantity andβ is for fidelity control. In (14), up-
dating ofwICAl(n) for all l should be simultaneously performed
in parallel in terms ofl because each iterative equation is asso-
ciated with the others via

PL
l=1 y

[j]
ICAl =

PL
l=1W

[j]
ICAl(z)x(t).

Also, the initial values ofwICAl(n) for all l should be different. If
not, each ICA has the same set of inputs and will produce the same
outputs. This results in an undesired solution. However, if we use
different initial values, then the convergence on the appropriate
SIMO solution is guaranteed by the simultaneous minimization of
(6) and (7).

3.2. Second stage: Blind multichannel inverse filtering for de-
convolution

In this stage, first, consider the blind channel identification corre-
sponding to the first sound sources1(t), where we deal with the
case ofK = L = 2. Note that this can be easily extended to the gen-
eral case (K > 2) by picking up the arbitrary two SIMO compo-
nents from SIMO-ICA’s outputs. In this process, the room transfer
functions,A11(z) andA21(z), can be estimated by a subchannel
matching approach [5, 6, 7] in an SIMO framework because we
have already resolved the mixing process of the sources into a sim-
ple SIMO model through SIMO-ICA in the previous stage. The
subchannel matching approach can work even for the temporally
correlated signal. Regarding the blind channel identification cor-
responding to another sound sources2(t), we can estimateA12(z)
andA22(z) using the same approach.

Finally, we can estimate the multichannel inverse filters,G11(z)

andG21(z) for Â11(z) andÂ21(z), andG12(z) andG22(z) for



Â12(z) and Â22(z), based on the multiple-input/output inverse
theorem (MINT) [8]. In the MINT method, the exact inverse of
the room acoustics can be uniquely determined, even whenÂkl(z)

has the nonminimum phase properties, ifÂkl(z) does not have any
common zeros in the z-plane. For example, the recovered signals
ŝl(t) under (12) are given as

ŝ1(t) = G11(z)y
(1)
1 (t) + G21(z)y

(2)
2 (t), (15)

ŝ2(t) = G12(z)y
(2)
1 (t) + G22(z)y

(1)
2 (t). (16)

The accurate estimation of the filter lengthN of the room im-
pulse responses is indispensable for improving the system identi-
fication performance. There are various methods for filter-length
estimation and we use the Furuya’s method [7] in this work.

3.3. Discussion on identifiability

In this section, we first derive the entire filter used in the proposed
method. Secondly we discuss the channel identifiability of the pro-
posed BSD.

Using (6) and (7), we can express the recovered source signals
(15) and (16) as

ŝ1(t) = [G11(z), G21(z)]

"
W

(ICA1)
11 (z) W

(ICA1)
12 (z)

W
(ICA2)
21 (z) W

(ICA2)
22 (z)

#
· x(t), (17)

ŝ2(t) = [G12(z), G22(z)]

"
W

(ICA2)
11 (z) W

(ICA2)
12 (z)

W
(ICA1)
21 (z) W

(ICA1)
22 (z)

#
· x(t). (18)

Thus, we obtain the entire input-output relation,

[ŝ1(t), ŝ2(t)]
T = W̄ (z)x(t), (19)

where

W̄ (z)

=

"
G11(z)W

(ICA1)
11 (z) + G21(z)W

(ICA2)
21 (z),

G12(z)W
(ICA2)
11 (z) + G22(z)W

(ICA1)
21 (z),

G11(z)W
(ICA1)
12 (z) + G21(z)W

(ICA2)
22 (z)

G12(z)W
(ICA2)
12 (z) + G22(z)W

(ICA1)
22 (z)

#
. (20)

W̄ (z) is the resultant separation filter matrix, and is represented
as a square (2×2) polynomial matrix with a finite order of less
thanD + N − 1. Here,N corresponds to the length of the mul-
tichannel inverse filterGij(z), and is automatically determined in
accordance with the length ofA(z). On the other hand,D, the
length of the separation filterW (ICAl)

ij (z) in SIMO-ICA, can be
arbitrarily set by the user.

Previous studies [9, 10, 11] have indicated that the channel
identification cannot be realized in the case ofK = L without spe-
cial assumptions. Therefore the proposed BSD cannot obtain the
exact source signals in theory because the entire filter is a square
polynomial matrix. Since the deconvolution in the second stage
can be performed exactly, it is considered that the separation to the
SIMO model in the first stage includes a few residuals. In prac-
tice, however, we can reduce the residuals by setting filter length
D in the first stage to be sufficiently long; this can be shown in the
next simulation. Thus, the SIMO-model-based signals are approx-
imately reproduced in this case. Overall, the identifiability almost
holds under the assumption that we are allowed to use the long FIR
filters in SIMO-ICA as well as (A1) and (A2).

4. SIMULATIONS
4.1. Conditions for experiment

The mixing filter matrixA(x) is taken to beA11(z) = 1 −
0.7z−1 − 0.3z−2, A21(z) = z−1 + 0.7z−2 + 0.4z−3, A12(z) =
z−1 + 0.7z−2 + 0.4z−3, andA22(z) = 1 − 0.7z−1 − 0.3z−2.
Two sentences spoken by two male speakers are used as the origi-
nal speech sampless(t). The sampling frequency is 8 kHz and the
length of speech is limited to 7 seconds. The number of iterations
in ICA is 15000.

We carry out the following two experiments.
(Experiment 1) We evaluate SIMO-ICA while the length of the
separation filter,D, is varied from 4 to 128 taps. We change the
step-size parameterα among1×10−6 ∼ 2×10−6, and setβ to be
6× 10−4, and we find optima which give the best performances.
(Experiment 2) We compare three methods as follows: (a) con-
ventionalholonomic ICA (ICA-based BSD) [1] given by (5), (b)
conventionalnonholonomic ICA [4] given by (14) with setting
β=0, and (c)proposed two-stage BSD. In SIMO-ICA, the step-
size parameterα is2×10−6 andβ is6×10−4. Also,η is1×10−6

in the holonomic ICA, andα is1×10−6 in the nonholonomic ICA;
these are optima which provide the best performances. The length
of the separation filter is set to be 64 taps.

In these experiments, three objective evaluation scores are de-
fined as described as follows. First,SIMO-model accuracy(SA) is
defined as

SAl =
1

K

X
k

10 log10

n 
‖refkl(t)‖2
�

t
‖y(l)
k (t)− refkl(t)‖2

�
t

o
, (21)

whererefkl(t) = Akl(z)sl(t). The SA is used as to indicate a
degree of similarity between the SIMO-ICA’s outputsy

(l)
k (t) and

SIMO-model-based signalsrefkl(t). Secondly,noise reduction
rate(NRR) [12], defined as the output signal-to-noise ratio (SNR)
in dB minus the input SNR in dB, is used as the objective indica-
tion of separation performance, where we do not take into account
the distortion of the separated signal. The SNRs are calculated un-
der the assumption that the speech signal of the undesired speaker
is regarded as noise. Thirdly,mel cepstral distortion(melCD) is
used as the indication of deconvolution performance. In this study,
we defined the melCD as the distance between the spectral enve-
lope of the original source signalsl(t−D/2) and that of the sep-
arated output. The 40th-order Mel-scaled cepstrum based on the
smoothed FFT spectrum is used. The melCD will be decreased to
zero if the separation-deconvolution processing is performed per-
fectly.

4.2. Results and discussion

Figure 1 shows the results of SA, where the SA increases as the
length of the separation filter,D, is increased to more than the
length of the mixing system. In particular, the SA of about 30 dB,
which is sufficiently accurate for the following deconvolution pro-
cess, is achieved when the filter length is set to 64 taps. Thus, the
SIMO-ICA can reproduce the SIMO-model-based signals using
the sufficiently long filter. This result supports the discussion on
the identifiability of the proposed method as described in Sect. 3.3.

When the channel identification was performed in the sec-
ond stage, the proposed method could blindly estimate the length
of a(n) at four taps successfully by using an existing Furuya’s
method [7] for SIMO model.

Figure 2 shows the results of NRR and melCD for different
methods. From the results of NRR, it is evident that the separation
performance of the holonomic ICA is too poor, but those of the
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proposed method and the nonholonomic ICA are high and compa-
rable as far as the only separation performance is concerned. As
for the distortion of the separated speech, which is an important
issue from the practical viewpoint, there is a considerable differ-
ence between these methods, and this will be discussed in the next.
From the results of melCD, first, it is evident that the melCD of
the holonomic ICA is obviously high, i.e., the resultant speech is
whitened by the decorrelation in the conventional method. Next,
the result of the nonholonomic ICA shows that there are still some
distortions in the separated signals. Finally, regarding the results of
the proposed method, there is a considerable reduction of melCD.
These results indicates that the proposed BSD algorith can suc-
cessfully achieve th separation and deconvolution for a convolu-
tive mixture of temporally correlated signals using the sufficiently
long separation filter in SIMO-ICA.

5. CONCLUSION

We proposed a new BSD framework in which SIMO-ICA and
blind multichannel inverse filtering are efficiently combined. In

order to evaluate its effectiveness, a separation-deconvolution ex-
periment was carried out assuming 2 microphones and 2 speech
sources. The simulation results revealed that the conventional ICA-
based method includes adverse spectral distortion due to the inher-
ent whitening effect, and the spectral distortion can be consider-
ably reduced by using the proposed two-stage BSD algorithm.
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