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Abstract: In the echo canceling for hand-free set mobile 
radiotelephone or teleconference system, the double-talk 
is occurred when both the near-end and the far-end 
speakers talk simultaneously. The conventional adaptive 
digital FIR filter using algorithm such as LMS fails to 
track the echo path in this condition.  Because the error 
signal is contaminated to the near-end signal to estimate 
the gradient correctly. The Correlation LMS (CLMS) and 
Extended Correlation LMS (ECLMS) algorithms have 
been introduced by authors to challenge the double-talk 
in the echo canceling system. In this paper we propose a 
new implementation of ECLMS algorithm in the wavelet 
domain called wavelet transform extended correlation 
LMS algorithm (WECLMS) to improve the speed of the 
convergence. The computer simulation results support 
the theoretical findings and verify the robustness of the 
proposed WECLMS algorithm in the double-talk 
situation. 
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1 – Introduction 
     In hand-free mobile radiotelephone or in tele-
conference system, where we have acoustic echo 
feedback from loudspeaker to microphone, the quality of 
communications is degraded severely.  
     Adaptive FIR filters by using the conventional LMS, 
BLMS, or NLMS algorithms are utilized for echo 
canceling. However, in the double-talk environment 
when both the near-end and the far-end signals are 
presented, the error signal used for tap adaptations will 
be uncorrelated with the echo signal and therefore, tap 
adaptations processes are severely damaged.       

The conventional algorithm usually stops adaptation 
whenever double-talk sensor detects this condition. 
Stopping the tap adaptation is just a passive action to 
handle the double-talk condition and it causes lowering 

speed of adaptations and/or totally mislead when the 
echo path changed in the period of halting tap adaptation. 
Other works for challenging the problem of double-talk 
situation in the echo canceling can be found in [1], [2], 
and [3] that cause much more complexity adding to a 
simple LMS algorithm. 
     To solve the double-talk problem, correlation LMS 
(CLMS) algorithm and Extended CLMS (ECLMS) 
algorithm which utilize the correlation function of input 
signal instead of the input signal itself, have been 
proposed [4], [5], and [6]. Therefore, we can continue 
the tap adaptation (non-freezing) even in the double-talk 
situation, without misleading the estimation process. 
However, the convergence speed of the CLMS and the 
ECLMS algorithms are not so fast. 

In this paper, we propose a new implementation of 
ECLMS algorithm in the wavelet domain called wavelet 
transform extended correlation LMS algorithm 
(WECLMS), to improve the speed of the convergence.  
The computer simulation results verify that the 
WECLMS algorithm achieves a better result compared 
with CLMS and ECLMS algorithms and show the 
robustness of the WECLMS algorithm in the double-talk 
condition.  
 
2 - Double-Talk and ECLMS Algorithm 
    In Fig.1, the echo canceling is shown. The output of 

the FIR filter, (n), is estimating the echo signal, y(n), 

by adjusting taps, h

ŷ

i(n), to filter the input x(n):  
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The echo signal is obtained from echo impulse response, 
r, as follows (N is the acoustic impulse response length): 
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The error signal, e(n), is calculated as below:   

                      e(n)=d(n)- (n)                                   (3) ŷ

 

 

mailto:yamashita@comm.ees.osakafu-u.ac.jp


where  d(n), is microphone signal that usually contains 
the echo signal. The LMS algorithm [7] is as follows: 

                  (4) )().(.2)()1( 0 inxnenhnh ii −+=+ µ

where , is the step size for tap coefficients adaptation. 

If the near-end signal, s(n), is also presented during the 
echo canceling, then the microphone signal contains 
both the echo and the near-end signals.: 

0µ

                               d(n)=y(n)+s(n)                          (5) 
We call this condition as double-talk. It is well known 
that the error signal in this case contains uncorrelated 
component with input and echo signals. Therefore, the 
algorithm in (4) is failed to track the correct echo 
impulse response.  
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Echo canceller system 
    The ECLMS algorithm [6] is defined to handle this 
condition by computing the autocorrelation of the input 
as follows: 
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  Also the cross-correlation between the desired and the 
input signal is calculated as follows:  
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Substituting from (2), (5) and (6) into (7) and 
assuming that there is no correlation between the 
far-end and the near-end signals [6] 

, the cross-correlation will be 

obtained as follows: 
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 To estimate , we need to process the 

autocorrelation values of the input by an adaptive 

filter and find the error, , between the real 

and the estimated values of the cross-correlation.  
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The gradient for tap coefficients adjustment in the 
correlation-processing filter is obtained (to minimize 
the MSE) as follows:   

          (11)                      ))],(().,([2][ jnRToeplitzjneEMSE xxj −=∇

and the ECLMS algorithm [6] is derived as below:  
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3 – Discrete Wavelet domain Algorithm 
     Like the Fourier series expansion, the wavelet series 
expansion of the previous section maps a function of a 
continuous variable into a sequence of coefficients. If 
the function being expanded is a sequence of number, 
like samples of a continuous function f (x), the resulting 
coefficients are called the discrete wavelet transform 
(DWT) [8] of f(x). For this case, the DWT transform can 
be defined as:  
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where                      (16) )2(2)( 2/
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Here, are called the approximation or 

scaling coefficients; W are called the detail or 

wavelet coefficients; is called scaling function and 

is called wavelet function; p determine the 

position of along the x-axis; j determine ’s 

width – how broad or narrow it is along the x-axis. For 

example, for some x
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x=0,1,2...M-1. We select M to be a power of 2 (i.e., 

 

 



M=2j) so that the summations are performed over 
x=0,1,2...M-1, j=0,1,2...J-1, and p= 0,1,2...2j-1. We can 
set j0 equal each one from 0 to J-1, thus Eq.13 and 14 
define a “family” of transform that differ in starting 
scale j0. The Inverter Discrete Wavelet Transform is 
defined as Eq.15.  

We can update the tap coefficients is shown as We can update the tap coefficients is shown as 
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To improve the speed of the convergence we propose 
a new implementation of ECLMS algorithm in the 
wavelet domain called wavelet transform extended 
correlation LMS algorithm (WECLMS).  In Fig3, the 
WECLMS algorithm is shown.  

To this end we use the H1 and H2 to do the Inverter 
Discrete Wavelet Transform (IDWT) by the Eq.15. 

As shown in the Fig.2, first, for each n we take 
Discrete Wavelet Transform (DWT) of the cross-
correlation function and the autocorrelation function by 
Eq.16, 17. The two coefficients can be written as: 

As shown in the Fig.2, first, for each n we take 
Discrete Wavelet Transform (DWT) of the cross-
correlation function and the autocorrelation function by 
Eq.16, 17. The two coefficients can be written as: 
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4 - Simulation Results 

The acoustic echo impulse response, , of the 

room is assumed to have exponential decaying shape 
that decreases to -60 dB after N samples as follows: 
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 To measure the performance of the convergence of the 
algorithm, we use the ratio of distance of weight and   
impulse response, DW(n),  which is defined as follows: 
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Fig.2.  Echo canceller using WECLMS algorithm Fig.2.  Echo canceller using WECLMS algorithm 
  

As like as the ECLMS algorithm the error signal is 
shown by 
As like as the ECLMS algorithm the error signal is 
shown by 
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In order to show the capability and robustness of the 
wavelet domain proposed WECLMS algorithm, we have 
performed several computer simulations. In Fig. 3, the 
convergence characteristics for the wavelet domain 
proposed WECLMS algorithm is compared with CLMS, 
and ECLMS algorithms in the single-talk condition. As 
we see from the Fig 3, the WECLMS is better than the 
CLMS and ECLMS, but the enough convergence is not 
achieved. In the Fig.4, the WECLMS algorithm is 
compared with those of LMS, CLMS and ECLMS 
algorithm in the double-talk condition. As the Fig.4 
shown, the LMS algorithm cannot work in the double-
talk condition. The CLMS and ECLMS reach to –4dB 
and –8dB, while the WECLMS, which is the best among 
all algorithms, converge to –16dB. In the next 
simulation in Fig. 5, we started with the single-talk 
condition. Then, at 2496-th iteration, we changed to 
double-talk condition. We can see that both in the 
single-talk and double-talk condition the WECLMS 
algorithm converges very fast. In the last simulation in 
Fig.6, we started with the single-talk condition. Then, at 
4992-th iteration, we changed the echo path impulse 
response (by using different random number in Eq.2) 
and imposed the double-talk condition at the same time. 

 

 



As it shown in Fig.6, the WECLMS algorithm has 
superior convergence characteristics comparing with the 
CLMS and ECLMS algorithm.  

 

0 1000 2000 3000 4000 5000
-15

-10

-5

0

ECLMS
WECLMS

CLMS

N=5000
tap=32
u=0.007
input: white noise

Number of Iteration (N)

 

 

  B
]

 ) [
d

5 - Conclusion 
 W

(n     A new implementation of the extended correlation 
LMS algorithm in the wavelet domain was proposed. An 
improvement of more than -10 dB has been obtained in 
performance of the proposed algorithm over the past 
algorithm. Also, a 16 dB convergence has been obtained 
as compared with other conventional algorithm, which 
totally does not converge in double-talk. Therefore, the 
proposed WECLMS algorithm is more robust than 
previously proposed CLMS and ECLMS algorithms. 
The robustness of the proposed algorithm for the echo 
canceling in double-talk situation was shown by 
computer simulation.  
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Fig.3. Comparison between LMS, CLMS, ECLMS  
and proposed WECLMS in single-talk 
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