
A PC BASED PLATFORM FOR MULTICHANNEL REAL-TIME AUDIO PROCESSING

Hauke Krüger, Thomas Lotter, Gerald Enzner and Peter Vary

Institute of Communication Systems and Data Processing
Aachen University, Templergraben 55, D-52056 Aachen, Germany

e-mail:
�
krueger,lotter,enzner,vary � @ind.rwth-aachen.de

ABSTRACT
In this contribution a new concept for the rapid development
of real-time prototypes for digital signal processing algo-
rithms on a General Purpose Personal Computer (GP-PC)
based on the Windows operating system (Windows OS) is
presented. In this approach, hardware and algorithm related
programming issues are separated in order to liberate the
designer from problems which are not related to the deve-
lopment of the algorithm. The described platform therefore
admits the complete focus of the developer on algorithmic
aspects.
We will present the system along with example applica-
tions from acoustic echo cancelation and multichannel noise
control. A third example from the field of speech coding
demonstrates the computational power available on a state-
of-the-art PC.

1. INTRODUCTION
The development of a product applying a new algorithm in
the field of digital audio signal processing commonly con-
sists of three development phases as depicted in Figure 1.

� Research involving the usage of high level program-
ming languages (Development Phase 1) such as Mat-
lab [1] or C/C++ [2]

� Real-time evaluation of the resulting algorithm (De-
velopment Phase 2)

� System design and integration for the fully developed
algorithm (Product)

Realtime Prototype
floating point/

fixed point

Development

Development

Phase 2

Phase 1

Product
System Design

(low power, fixed point)

(Matlab, C/C++)
Prototype

Offline

Verification
Optimization

Fig. 1. Three phases during the development of a new algo-
rithm

In phase 1 the basic functionality of the new algorithm
is investigated. Phase 2 is important for the verification and

optimization under real-time conditions. Phase 3 comprises
the design of a product oriented system and a fixed point in-
tegration of the algorithm and in general is not in the scope
of the algorithm developer.
For the real-time evaluation in phase 2, a system must be
provided that on the one hand is capable to execute the new
algorithm under real-time conditions as close to the final
product as possible, and that on the other hand simplifies the
transition from the offline prototype to the real-time imple-
mentation. While the final product usually requires a fixed
point implementation of the algorithm, floating point arith-
metic is sufficient for the evaluation platform.
Earlier, the real-time and computational requirements for
the evaluation of new algorithms could only be satisfied by
developing a new piece of hardware containing a power-
ful Digital Signal Processor (DSP) or designing a logical
device such as a Field Programmable Gate Array (FPGA)
[3]. Implementing a new algorithm on the developed hard-
ware at least requires the knowledge of the hardware in-
ternals. Furthermore the algorithm may have to be reim-
plemented on the new device due to the programming in
assembly language (DSP specific assembler) or a hardware
description language (e.g. Very High Speed Integrated Cir-
cuit Hardware Description Language (VHDL), [4]). Often
the hardware related audio setup highly depends on the al-
gorithm prototype to be implemented (e.g. fixed number
of audio channels). After the real-time implementation has
been completed for one algorithm the next one may require
a new hardware setup. Under certain circumstances the ex-
isting prototyping platform does not comply with the new
setup and must therefore be developed from scratch.
User interaction at runtime is also an important feature that
helps to optimize and verify algorithm parameters. For ex-
ample in the field of hearing aids the perfect setup for a new
algorithm can only be found by a person who himself is af-
fected by hearing limitations (which most commonly is not
the algorithm developer). Adding these interaction mech-
anisms requires the integration of additional hardware and
software to the real-time prototyping platform.
The increase of performance of General Purpose Proces-
sors (GP-CPUs) recently helps to alternatively come up with
PC based platforms that are capable to execute algorithms
mostly under real-time conditions. The architectural advan-
tages that DSPs provide can be outbalanced by the high
clock frequencies of state-of-the-art GP-CPUs at the ex-
pense of a higher power consumption which can be toler-



ated during the real-time prototyping phase. The Windows
operating system by definition is not a real-time operating
system. The response time of the system however has de-
creased during the last years and is nowadays sufficiently
short to fulfill real-time constraints with low latencies at
least for most of the time (soft real-time). Using GP-PCs,
an algorithm designer can now integrate new algorithms in
the field of audio processing based on various Software De-
velopment Kits (SDK) such as ASIO 1 [5] or DirectX [6]
and reach latencies even below 5 ms (ASIO).
However, we have experienced that even though the pro-
vided development kits are well documented, designers of-
ten desire to implement their algorithms without consider-
ation of particular constraints of the underlying hardware
and software. In the ASIO-SDK for example the user has
to deal with hardware specific sample formats and the me-
thodologies to open/close the device driver for supported
soundcards.
In this paper we present a new technique that enables the
designer in the field of digital audio processing to fully con-
centrate on the development of algorithms without wasting
too much energy in dealing with the audio hardware in or-
der to create a real-time prototype. With this approach a
high level programming language can be used also for the
real-time prototype. Under certain circumstances software
components from the offline development phase can even be
reused without any modifications. The new technique fur-
thermore comprises mechanisms for a real-time messaging
mechanism that, especially in combination with a Graphi-
cal User Interface (GUI), will allow even the non-expert to
optimize the parameters of the algorithm by simply clicking
buttons or moving sliders.
The whole system is based on state-of-the-art soundcards.
Setting up the computer for new hardware conditions only
means to purchase a new audio device for a PC and to install
the driver.

2. PRINCIPLES OF AUDIO PROCESSING
Real-time audio processing is usually based on a double-
buffering architecture: While in one task the audio samples
from the Analog-To-Digital Converter (ADC) are stored in
one input buffer and played back from one output buffer via
the Digital-To-Analog Converter (DAC), the audio samples
in the other input buffer are transferred into the other output
buffer in a parallel task applying algorithm related process-
ing of samples. After the collection of samples has been
completed for one buffer length the buffers are switched.
It is desirable that the only task for the algorithm developer
is to implement the routine processing the data in the in-
put buffer in order to transfer it to the output buffer apply-
ing the algorithm related functionality. The algorithm will
become active whenever a complete buffer has been filled
(buffers are switched) and must terminate before the next
buffer will be complete (buffers are switched). When using
the mentioned SDKs the approach is more complicated due
to the variety of underlying software concepts, e.g. opening
a driver or dealing with hardware specific sample formats.

1ASIO is a trademark of the Steinberg Media Technologies AG

3. NEW APPROACH
In order to support the design of the real-time application we
have created a system that separates the hardware related
topics from those related to the algorithm. Therefore we
have divided each real-time application into three entities:
The hardware, the host and the algorithm module. Figure
2 depicts the three-modules-architecture to be explained in
the following sections.

����������������������������������

e.g. floate.g. float

Driver/Host API

Audio−Driver

e.g. INT24 e.g. INT24

e.g. float e.g. float

ADC DAC
soundcard

Algorithm:
input output

HOST

Hardware

Algorithm

Host

Host/Algorithm API

H
os

t A
P

I

Fig. 2. Hardware, host and algorithm module.

3.1. Hardware Module
The hardware module is based on one of the SDKs men-
tioned. It is only linked to the host. Via an Application Pro-
grammable Interface (API) the host has access to the hard-
ware. Functionality such as opening a driver and obtaining
information on the hardware setup is provided. Most de-
vice drivers use 16-, 24 or 32-bit fixed point datatypes for
the audio input and output. In order to prepare the process-
ing of the audio input during real-time execution the hard-
ware module converts the hardware specific input buffers
into buffers of a hardware independent datatype (floating
point datatype). After the conversion the host is notified
that a new buffer is ready for being processed.
3.2. Algorithm Module
The algorithm module processes the data in the hardware in-
dependent buffers that the host provides. This is where the
algorithm designer will implement the application. The al-
gorithm module is linked to the host via an API. Besides the
processing the algorithm module has the opportunity to ne-
gotiate samplerate, buffersize and amount of input and out-
put channels with the host. Messages for a runtime user in-



teraction can be handled in the algorithm-module internally
or can be received from the host-module. By setting new
values for parameters that are used in the main algorithm-
procedure from within the message receiving routine, the
user interaction will directly have an impact on the audio
processing.
3.3. Host Module
The host module implements the bridge between the hard-
ware and the algorithm components. It can be an appli-
cation itself or may be used as a component controlled by
an application (Host-API). Before processing the hardware
must be instructed to open the driver and to describe the
hardware capabilities for processing (available amount of
input/output channels, sample-rates and buffersizes: hard-
ware constraints). The algorithm module is registered with
the host and provides information on the audio setup it re-
quires (expected amount of input/output channels, sample-
rates and buffersizes: software constraints). A match be-
tween hardware and software can be found by the user and
is passed to the hardware and the software module before
the processing is initiated. At runtime the hardware inde-
pendent buffers are transferred from the hardware module
to the algorithm for processing and back. In parallel the
host may exchange messages with the algorithm module in
order to enable user interaction.
3.4. Practical Aspects
We have experienced two different approaches to use the
host: In one approach the host is implemented as a Gra-
phical User Interface. The algorithm-module comes along
with an additional graphical user dialog window and han-
dles the runtime messaging mechanism internally. In an-
other approach the complete host is controlled via a power-
ful API. The real-time algorithm module is registered and
can be controlled using the messaging mechanism provided
by the host during runtime. The idea is to integrate the real-
time processing functionality into any kind of application
and graphical environment, e.g. a web browser.
The strongest feature of the developed platform is the inter-
changeability of the components. The driver in general is
interchangeable at runtime in the Windows operating sys-
tem (OS). The algorithm module is implemented as a Dy-
namic Link Library (DLL) and can be loaded and unloaded
at runtime. To have the components interchangeable at run-
time means that different algorithms can be sequentially ex-
ecuted on different soundcards without the need to restart
the host application.
Due to the interchangeability of the components the host in
combination with the algorithm can also be used as an off-
line audio processor. This will enable the designer to verify
the algorithm with predefined audio signals. No modifica-
tion will be required to switch from the offline algorithm
development phase (phase 1) to the real-time prototyping
phase (phase 2).

4. DEMONSTRATION
The proposed technology will be presented on a portable
PC with state-of-the-art audio devices used for analog-to-
digital conversion. We will present the following example
applications of real-time audio processing, switching from

one to the other by simply loading and unloading different
algorithm modules:
4.1. Acoustic Echo Canceler
Acoustic echo in hands-free communication systems is due
to the echo path from the loudspeaker to the microphone
as shown in Figure 3. Given the received signal, an echo
canceler reconstructs and removes the echo signal from the
microphone signal before transmission [7]. Real-time sim-
ulation of acoustic echo cancelers is necessary to prove
the robustness of the adaptation in realistic acoustic envi-
ronments. As shown in Figure 3, the acoustic echo can-

path

useful

echo

MIC

SPK

DAC

in 1

in 2out 2

DAC

ADC

signal

received

signal

signal

echoecho

transmitted

signal

ADC

canceler

out 1

Echo Canceler (Algorithm) Unit

−

Fig. 3. Schematic of an acoustic echo canceler embedded in
the real-time setup.

celer has two input and two output channels. The corre-
sponding set of sample buffers is a very user-friendly in-
terface for the algorithm developer. Very little care is re-
quired about hardware related issues (ADC, DAC, audio
playback). A multichannel setup is of course possible, pro-
vided that enough hardware channels and sufficient process-
ing power are available.

On a commercial PC (Pentium IV, 1800 MHz) we have
implemented an acoustic echo control unit with two input
and two output channels and the following features (not
shown in Figure 3):

� Sampling rate conversion from 32kHz (soundcard) to
8kHz (algorithm).

� Frame-based adaptation of an echo canceler and a
postfilter for residual echo suppression in the Discrete
Fourier Transform (DFT) domain [8].

� A frame-shift (algorithmic delay) of 64 samples at a
sampling rate of 8 kHz and 6 DFTs/IDFTs of length
512 per frame-shift.

� A computational complexity of about ��������� multi-
ply/accumulate instructions per second.

� Compensation of 20 ms hard- and software latency in
the echo canceler path of the system.

4.2. Superdirective Beamformer
A beamformer for noise reduction with multiple micro-
phones as depicted in Figure 4 is embedded in the real-time
setup. The beamformer consists of 	 time domain filters.



1 2 MPSfrag replacements

Superdirective Filter
User input

Microphone Array

��� ��� ���
ADCADCADC

DAC

Fig. 4. Superdirective beamformer embedded in real-time
setup.

The filters are designed with constrained superdirectivity
[9], i.e. the tradeoff between degree of superdirectivity and
susceptibility toward microphone or amplifier mismatch can
be regulated. Due to the versatility of the real-time sys-
tem, all parameters of the superdirective beamformer can
be adjusted on the fly. First, the number of microphones,
the samplerate and the number of microphones used can be
adapted. Second, the degree of superdirectivity and the de-
sired spatial direction of the beamformer can be changed
during runtime. For that purpose the filter design procedure
is implemented as background task, which updates the co-
efficients as soon as the design process is completed. At a
sample rate of

�	��
�
� kHz the filter-and-sum operation can

easily be realized with 	

��

signals and filter lengths of
128 taps using a standard PC and a state-of-the-art multi-
channel soundcard.
4.3. Two Channel Real-time AMR Speech Codec
In order to demonstrate the computational power available
we present the application of a two channel (stereo) speech
codec: In this application the left and right channel input
signal is processed identically as depicted in Figure 5: The
incoming audio signal is processed by the Narrow Band
Adaptive Multirate (NB-AMR) Speech Encoder first and
the resulting bit-stream decoded in the NB-AMR Decoder,
both in floating point implementation following the ETSI-
standardization [10]. The audio signal obtained from the
soundcard (samplerate

����
��
� kHz) must be lowpass fil-

tered and resampled prior to processing due to the narrow
band characteristic expected by the speech codec (

� � 
��
kHz). Before passing the decoder output (

� � 
��
kHz) to

the soundcard for playback (
����
��

� kHz) the samplerate
must be converted by resampling and lowpass filtering.

Decoder

AMR

Encoder

AMR
4

32kHz

Lowpass

8kHz

4 Lowpass

32kHz

Fig. 5. NB-AMR Codec Simulation for each channel.

The codec’s worst case performance is specified as
16.75 WMOPS (Weighted Million Operations Per Second:
Measurement for complexity using a set of basic operations
defined by ETSI in fixed point arithmetic [11]). Thus the

complexity for the stereo setup is 33.5 WMOPS. Combin-
ing the two instances of the codec for left and right channel
with the rate conversion filters (60 Taps FIR-filter) for up-
and down-sampling, a portable PC, containing a 500 MHz
Pentium III and running an external audio device connected
via Universal Serial Bus (USB), can execute the algorithm
in real-time.

5. CONCLUSIONS
In this paper, we introduced a platform that aims at rapid
real-time prototyping in the field of digital audio signal pro-
cessing. The capabilities of GP-PCs and especially the Win-
dows OS can be exploited to avoid time consuming deve-
lopment of new hardware. In that context we proposed a
technique that helps to simplify the process of algorithm im-
plementation for the algorithm designer. The designer can
completely focus on the algorithm implementation without
the need to deal with getting in contact with hardware re-
lated routines. A powerful messaging mechanism supports
runtime user interaction for parameter optimization and ver-
ification, even controlled by a person who has no back-
ground in the field of digital signal processing. A very inter-
esting feature of the applied technology is the possibility to
use the same software component for offline processing and
the interactive real-time prototype of a new algorithm. In
the context of three real-time prototyping example applica-
tions we demonstrated that a commercial PC and soundcard
setup is capable to execute even complex algorithms in real-
time.

6. REFERENCES
[1] K.D. Kammeyer, V. Kühn, Matlab in der Nachrichtentechnik, J.

Schlembach Fachverlag, 2001.

[2] B.W. Kernighan, D.M. Ritchie, The C-programming-language,
Prentice-Hall, 1990.

[3] R. C. Restle, “Choosing between DSPs, FPGAs, � P and ASICs to
Implement Digital Signal Processing”, www.eg3.com, Jan. 2000.

[4] Y. Sudhakar, VHDL Starter’s Guide, Prentice-Hall, 1998.

[5] Steinberg Media Technologies AG, “ASIO 2.0 Audio Stream-
ing Input Output 2.0 Software Development Kit, Release 1”,
www.steinberg.net.

[6] Microsoft Corporation, “DirectX SDK”, msdn.microsoft.com,
2003.

[7] C. Breining, E. Hänsler, “Acoustic echo control, an application of
very–high–order adaptive filters”, IEEE Signal Processing Maga-
zine, pp. 42–69, September 1999.

[8] G. Enzner, P. Vary, “Robust and Elegant, Purely Statistical Adap-
tation of Acoustic Echo Canceler and Postfilter”, Proc. Intl. Work-
shop on Acoustic Echo and Noise Control (IWAENC) 2003, Kyoto,
September 2003.

[9] M. Dörbecker, “Multi-channel algorithms for the enhancement of
noisy speech for hearing aids”, Ph.D. Thesis (in German), Aachener
Beiträge zu digitalen Nachrichtensystemen, edited by P.Vary, vol. 10
(ISBN 3-86073-439-3), 1998.

[10] ETSI, GSM 06.71: Digital cellular telecomunications system
(Phase 2+); Adaptive Multi-Rate (AMR); Speech Processing Func-
tions; General Description, European Telecommunications Stan-
dards Institute, 1998.

[11] K. Järvinen, “Standardisation of the adaptive multi-rate codec”, in
European Signal Processing Conference (Eusipco), Tampere, Fin-
land, 2000, IEEE.


	Page195: 195
	Header: International Workshop on Acoustic Echo and Noise Control (IWAENC2003), Sept. 2003, Kyoto, Japan
	Page196: 196
	Page197: 197
	Page198: 198


