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ABSTRACT

This paper proposes a new structure for the feedforward
active noise control (ANC) systems with online secondary
path modeling. The proposed structure 1) uses the same
error signal for updating the noise-control process as used
for the modeling process, and 2) incorporates an averaging
based filtered-reference algorithm in the noise-control pro-
cess. The theoretical considerations are confirmed by the
computer simulations, which show that the proposed struc- Secondery-Peth Modeding Process LMS
ture achieves better performance than the existing methods. ‘
This improved performance is achieved at the expense of aFig. 1. Block diagram of FXLMS based ANC system with online
slightly increased computational complexity. secondary-path modeling (Eriksson’s method).

1. INTRODUCTION system with online secondary path modeling that can achieve
better performance than the existing improved methods.

The most popular adaptation algorithm used for active noise  The organization of this paper is as follows. Section 2
control (ANC) applications is the FXLMS algorithm which presents an overview of the existing methods for ANC sys-
is a modified version of the LMS algorithm [1]. The FXLMS tems with online secondary-path modeling. Section 3 ex-
algorithm is fairly robust to the modeling errors between the plains the proposed method in connection to the operation
secondary path and the modeling filter; however, in general,of the Eriksson’s method. Section 4 discusses the computa-
the noise reduction performance is inferior to that under tional complexity issue and Section 5 details the simulation
ideal conditions. Accordingly, we should use online identi- results.
fication of the secondary path characteristics to ensure the
stability and to maintain the noise reduction performance 2 EXISTING METHODS
when the secondary path is time varying [2]. '

The basic additive random noise technique for online cgnsider Eriksson’s method for ANC systems with online
secondary-path modeling in ANC systems is proposed by gecondary-path modeling, shown in Fig. 1. Assuming that
Erikssonet el. [3]. As shown in Fig. 1, this ANC system ne control filteriV(z) is an FIR filter of ordetL, the sec-
comprises two processes; a hoise-control process (hereaftas\(gndary signay(n) is expressed as
called the control process), and a secondary-path modeling
process (hereafter called the modeling process). Improve- y(n) = wh' (n)xg (n) 1)
ments in this method have been proposed in Refs. [4] — [6].

These improved methods introduce another adaptive filterwherew(n) = [wy(n) wy(n) --- wr_1(n)]T is the tap weight
into the ANC system of Fig. 1, and hence the design com- vector andky (n) = [X(n) X(n—1) --- x(n—L+1)]" is the
plexity is increased. reference signal picked by the reference microphone. An

In this paper we analyze the operation of the Eriksson’s internally generated zero mean white Gaussian noise sig-
method and suggest modifications by observing various sig-nal, v(n), uncorrelated with the reference noisg:), is in-
nals appearing in the system. This study results in an ANCjected at the outpug(n) of the control filter. The residual
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Fig. 2. Improved methods for online secondary-path modeling in ANC system of Fig. 1: (a) Bao's method, (b) Kuo’s method, (c) Zhang's
method

noise signak(n) is given as Equation (5) shows that the performance of the modeling
, , process is degraded by an undesired tegv(n)u(n) and
e(n) = d(n) —y'(n) +v'(n) @) in the worst case the modeling process may diverge.

Bao’s method is an attempt to improve the convergence
of §(z) in the presence af(n) by the introduction of ADNC
filter [4] in the modeling process. As shown in Fig. 2(a), the
ADNC filter B(z), excited byz(n), cancels the interference
introduced byu(n) in the estimation of5(z). The method

whered(n) = p(n) xx(n) is the primary disturbance signal
at the error microphoney’'(n) = s(n) x y(n) is the sec-
ondary canceling signaly(n) = s(n) % v(n), * denotes
the convolution operation, ang(n) and s(n) are the im-

pulse responses of the primary pdttiz) and secondary : ot
path S(z), respectively. The residual noise signgh) is proposed by Kuet el is shown in Fig. 2(b). Here the adap-

used as an error signal for the control process, and as a{ive prediction—errorfiIteC(z), excited by_delayed version
desired response for the modeling process, &.g(n) = of e(n), predlct§ apd hepqe cancels the mter’ference caused
dy(n) = e(n). The coefficients of the control filtaiV () by u(n) [5]. This idea limits the use of Kuo’s method to
are updated by the FXLMS algorithm: only _narrow_band ANC systems where the reference noise
x(n) is predictable.
W(n + 1) = W(n) + pyew(n)x'(n) 3) These two approaches have greatly improved the con-
= W(n) + puX (n)[d(n) — ¥ (n) + v'(n)] vergence rate of the modeling process as compared with
the Eriksson’s method. It is important to note that in these
methods the error signal used for the control filter is same as

wherey.,, is the step size for the control procesgn) is  the residual error signal of the system, i®.(n) = e(n).
the reference signaln) filtered through the modeling filter ~Hence no effort is made to improve the performance of the

S(z), andu(n) = d(n) — ¢/ (n) is a component of the error ~ control process. _
signal due to cancelling noise only. We see that the control ~ The problem of mutual interference between the control

= W(n) + X ()u(n) + X () (n)

process is perturbed by an undesired terpx’ (n)v’ (n). process and the modeling process (duettn) = ds(n) =
Assuming thatS(z) is represented by an FIR filter of ~€(n)) is considered in the Zhang's method (Fig. 2(c)) [6].
OrderM' the filtered-reference S|gnﬁ1(n) is obtained as Here the control ﬁlter, modeling filter and ADNC filter are
cross-updated to reduce the mutual coupling between the
2’ (n) = 8" (n)xp(n) 4) control process and modeling process [6]. As shown in Fig.

2(c), e (n) andd,(n) are computed as
wheres(n) = [8(n) &(n) -~ &y—1(n)]” is the impulse (©),c(n) (n) P

response of the modeling filt&k z) andx; (n) = [x(n) X(n— ew(n) = e(n) —o'(n) =u(n) + [v'(n) — o'(n)](6)
1) -+ x(n—M +1)]T. The LMS update equation fc(z) dy(n) = e(n) — z(n) @)
is given as
Heree,(n) is used as a desired signal for ADNC filter.
S(n +1) = 8(n) + pses(n)v(n) (5)  When S(z) converges then’(n) ~ o'(n) ande,(n) ~
= 8§(n) + psV(n)[d(n) — y'(n) +v'(n) — 9'(n)] u(n) = d(n) — y'(n). WhenH (z) converges thea(n) ~

u(n) and henceds(n) ~ v'(n). Thus whenH(z) and

S + SV ! - + sV . . .
() + My (n) =& (n)] + uav(n)u(n) S(z) converge, appropriate signals are generated and an im-

wherep; is the step size of the modeling procegsn) = proved performance is expected. The simulations conducted
3(n) *x v(n) is an estimate of’(n) obtained from the mod- by Zhanget el show that this structure gives the best per-
eling filter, andv(n) = [v(n) v(n —1) --- v(n — M +1)]7. formance of all previous designs [6].

156



3. PROPOSED METHOD Table 1. Computational complexity (Number of Multiplica-

] ) . tions/Iterations) comparison of the proposed method with the ex-
From the above discussion we see that all improved meth-isting methods.

ods concentrate on the modeling process and control pro-

cess is same as in the Eriksson’s method. In the present Analytical L=M=64,| L=M=128,
stuldy we consfer improving thﬁ pgfrfcr)]rmance (IJf the con- Expression N=32 N=64
eficint m s ot reduction peromance, hen modefng. | Ssons MeRed 22 | 322 | a2
. P ’ 9 Improved Method$2L+3M+2N+3| 387 899
process will in turn converge fast.
Proposed Method| 6L+3M+2 578 1154

As shown in Fig. 1, the error signals for the control
process and the modeling process are given as

ew(n) = e(n) =u(n) +v'(n) 8) =(n)
es(n) = e(n) —9'(n) = u(n) + [v'(n) — 9'(n)](9)
From these expressions we observe that:

e Bothe,(n) ande,(n) containu(n), the error signal L ] eu(n)
required for the noise control process.elp(n), u(n) _
is corrupted by the component(n) and ines(n) it . —
is corrupted by the termv’(n) — o'(n)]. o wzgimrse ol By SIEICI
|
e As compared withe(n), es(n) is a better error sig- - d' ;;:A;;___P """" ; es(n)
ondary-Pal ing Process

nal for the control process, becausén) — v'(n)| <

[v'(n)| and whenS(z) converges then (ideally) (n) ~  Fig. 3. Proposed method for ANC systems with online secondary-
o'(n) = [v'(n) = 9'(n)] — 0. path modeling.

e Sincew(n) is a white Gaussian noise of zero mean

hence both'(n) and[v’(n) — @'(n)] are random in 4. COMPUTATIONAL COMPLEXITY
nature and can be averaged out.

On the basis of the above analysis two modifications are 12Ple 1 presents the computational complexity (multipli-
suggested to the Eriksson’s method. First, usifg) asan  Cations per iteration) comparison of the proposed methods
error signal for both the control process and the modeling With the existing methods. It is assumed that three adap-
process, i.e.e,(n) = es(n) = e(n) — o'(n) . Second tive filters, B(z), C(z) and H(z) in Bao’s method, Kuo’s
replacing FXLMS algorithm with the adaptive filtering with Method and Zhang's method, respectively, are selected of

averaging (AFA) [7] based filtered-x (FXAFA) algorithm. prderN. Hence these methods (ca!led Improved'Methods
The proposed ANC system is shown in Fig. 3. in Table 1) have the same computational complexity.

The FXAFA algorithm [8] is a modified version of the In improved methods, the order of the third filtér, is
FXLMS algorithm, where averaging is incorporated with Usually selected less thdn(a thumb rule isV' < L/2). If
both the iteration vector and the observation vector. Due & large value forV is selected then the convergence of the

to averaging the random fluctuations in the learning curvesthird filter is slow, and overall performance of the ANC sys-

are reduced and hence iterations move towards the optimaf€Mm i degraded. With this constraint, the analytical expres-
solution at a faster rate. Referring to the FXLMS algorithm Sions in Table 1 show that the computational complexity of

in Eq. (3), the FXAFA algorithm can be formulated as given the proposed method is greater than the existing schemes.
in Eq. (10). To get a clear picture, a few numerical examples are also

presented in Table 1.

W(n+1):m+nf{{ "

pwew (k)X (k); 1/2 <y <1
k=1

5. SIMULATIONS

(10)
wherew(n) = £ 377 w(k). It is important to note that  In this section we compare the performance of the proposed
computing the running average of the data does not put somethod with the Eriksson’s method and Zhang's method.
much computational burden since averages can be calcuThe performance comparison is done on the basis of the
lated recursively [8]. Now better noise reduction perfor- relative modeling erro(RM FE) being defined aRM E =
mance is expected and ANC will reduce the residual noise 10logy, [£5 " {s;(n) — &(n)}? /S5 s?(n)]. For the pri-

componentu(n) at fast convergence rate. This means that mary acoustical patf(z) and the secondary pa#i{z) the
the modeling process is expected to converge fast now. experimental data provided by [1] is used, where both are
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modeled by IIR filters of order 25. We truncate the impulse Tapje 2. Simulations parameters for computer experiments.
responses of the acoustic paths to get FIR (order 64) repre-

sentation. The modeling filte¥(z) and control filtedV (), Casq Eriksson’s Method Eriksson Modified
respectively, are FIR filters of order 64. The ADNC filter (pw, 15) Method i, 115)
H(z) in Zhang's method is selected as an FIR filter of order | 1 110775 x 107" 2x107°,7x 107"
32. All initial valuesw(0), §(0), andh(0) are set to zero. 2 5x107°,5x 107" 5x107°,7x 107"
The sampling frequency of 4kHz is used. All the results Zhang’s Method Proposed Method
shown below are the average of 25 experiments. (Hws s, 1) (b, s 1)

1 12x1075,2x107%,2x 10735 x 107°,0.5,2 x 1073
5.1. Casel 2 [2x107°,5x107%,2x 10735 x 107*,0.5,5 x 1072

For areference signal, the sinusoid of 330 Hz is added to the
sinusoid of 300 Hz, and then variance of the resulting sig-
nal is adjusted to two. To keep the low steady state residual
noise, a zero-mean white Gaussian noise of variance 0.05 is
used in the modeling process. The parameters are adjusted
for fast and stable convergence and are summarized in Table
2. InFig. 4(a), are shown the curves of the relative modeling
error,RM E, for the proposed methods in comparison to the -40; 10000 20000 30000 20000 50000
existing methods. Here Eriksson modified method is Eriks- @ Iteration time
son’s method withe,,(n) = es(n) = e(n) — ¥’'(n). This 0 ‘ ‘ T
structure is obtained by replacing FXAFA algorithm with o=
FXLMS algorithm in ANC system of Fig. 3. We see that the =
Eriksson modified method beats the Eriksson’s method, and =

the proposed method gives the best result of all. v

0 b 10000 20000 30000 40000 50000
() Iteration time

RME (dB)

-40p 11

5.2. Case?2 _ _ _ S
Fig. 4. Relative modeling erroRME versus iteration time; (a)

In this case a sinusoid of 450 Hz is added to the sinusoid of Case 1, (b) Case 2: (I) Eriksson’s method, (Il) Eriksson modified
300 Hz, and then variance of the resulting signal is adjustedmethod, (Ill) Zhang's method, (IV) Proposed method.

to two. As in Case 1, a zero-mean white Gaussian noise of
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