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ABSTRACT

Determining the spatial position of a speaker finds a growing
interest in video conference scenario where automated cam-
era steering and tracking are required. Speaker localization
can be achieved with a dual step approach. In the prelimi-
nary stage microphone array is used to extract the time dif-
ference of arrival (TDOA) of the speech signal. These read-
ings are then used by the second stage for the actual local-
ization. Since speaker trajectory must be smooth, estimates
of close speaker positions might be used to improve the cur-
rent position estimate. However, many methods, although
exploiting the spatial information obtained by different mi-
crophone pairs, do not exploit this temporal information. In
this contribution we present two localization schemes, which
exploit the temporal information. The first is the well known
extended Kalman filter (EKF). The second is a recursive form
of a Gauss method, which we denote Recursive Gauss (RG).
Experimental study supports the potential of the proposed
methods.

1 Introduction and Problem Formulation

In this work we address approaches for determining speaker
position which are comprised of two stages. In the first stage,
the TDOA is estimated using spatially separated microphone
pairs (e.g. [1],[2] and [3]). In the second stage, these read-
ings are used for the actual localization (e.g. [4], [5] and [6]).
These methods exploit the spatial information obtained by
different microphone pairs, but do not exploit the tempo-
ral information available from adjoint speaker position esti-
mates. This information is relevant for the current position
estimate, due to the speaker smooth trajectory.

Consider an array of M + 1 microphones, placed at the
Cartesian coordinates mi , [xi, yi, zi]

T ; i = 0, . . . , M where
m0 = [0, 0, 0]T is the reference microphone, placed at the
axes origin and (·)T stands for the transpose operation.

Define the source coordinate at time instance t by s(t) ,
[xs(t), ys(t), zs(t)]

T . Each of the M microphones, combined
with the reference microphone, is used at time instance t to
produce a TDOA measurement τi(t); i = 1 . . . M . Denote
the i-th range difference measurement by ri(t) = cτi(t),
where c is the sound propagation speed (approximately
340[m/s] in air). The non-linear equations for estimating
the source location parameters s(t) are (see for example [6]):

A(t)f(s(t)) ≈ d(t) (1)

where fT (s(t)) , �sT (t), ‖s(t)‖� and

A(t) ,
264 mT

1 , r1(t)
...

mT
M , rM (t)

375 , d(t) , 1

2

264 ‖m1‖2 − r2
1(t)

...

‖mM‖2 − r2
M (t)

375 .

Note, that only approximate equality holds in (1), since the
range difference measurements are noisy.

The organization of the rest of the paper is as follows.
In Section 2 we derive Gauss and recursive Gauss (RG) so-
lutions for the localization problem. A Baysian approach,
namely the extended Kalman filter (EKF), is presented in
Section 3. The equivalence of RG and EKF approaches is
discussed in Section 4. A test case is presented in Section 5.

2 Gauss and Recursive Gauss Algorithms

Huang et al. [6] addressed the non-linear set in (1) and solved
it by using Lagrange multiplier. Since a polynomial of de-
gree six is involved in the proposed method (denoted linear-
correction least-squares (LCLS)), no closed-form solution ex-
ists. Thus, the iterative secant method is used for the root
search.

2.1 Gauss Solution

The solution of (1) presented by [6] involves iterations.
We suggest to mitigate the non-linearity by an alternative
method, i.e the Gauss method. Note, that Eq. (1) becomes
a (non-linear) Least Squares (LS) problem if the number of
microphone pairs fulfills M > 3, i.e there are more equa-
tions than unknowns. The resulting non-linear LS prob-
lem can be solved by applying the Gauss method. Define
s(l)(t), the estimate of s(t) at the l-th iteration. Define also

ht(s
(l)(t)) , A(t)f(s(l)(t)), and the associated gradient ma-

trix by Ht(s
(l)(t)) = ∇sht(s

(l)(t)). By applying first-order
approximation to ht(s(t)), the Gauss iterations take the well
known form

s(l+1)(t) = s(l)(t)+�
Ht(s

(l)(t))
†
Ht(s

(l)(t))
�−1

Ht(s
(l)(t))

†�
d(t)− ht(s

(l)(t))
�
.

This solution exploits only the spatial information obtained
by the separated microphone pairs at a specific time instance,
but does not consider the temporal information.

2.2 Recursive Gauss (RG) Procedure

To obtain a recursive Gauss procedure we begin by evaluat-
ing Eq. (1) at all measurements from t = 1 to t = N :

A(t = 1)f(s(1)) ≈ d(1), . . . , A(t = N)f(s(N)) ≈ d(N).
(2)
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Note that this is still a nonlinear equation set in the un-
known positions s(t); t = 1, . . . , N , due to the nonlinearity
introduced by f . By assuming that s(t) is slowly varying
with time, a recursive solution can be derived.

The proposed method, which is also presented in [2] and
for completeness reviewed here, starts by resolving the non-
linearities using first-order approximation (as with the orig-
inal Gauss method), and then continues by deriving a recur-
sion (applying further approximation). This solution will be
referred to as Recursive Gauss (RG).

Consider a nonlinear equation set for the unknown p × 1
parameter vector θ ∈ Cp:

h1:N (θ) = d1:N

where hT
1:N (θ) , �

hT
1 (θ)· · ·hT

N (θ)
�

and dT
1:N ,

�
dT
1 · · ·dT

N

�
.

ht and dt are K nonlinear equations and K measurements,
available at time instance t, respectively. Applying first-
order approximation around an initial guess θ(0) (as with
the Gauss method) we obtain:

h1:N (θ(0)) + H1:N (θ(0))
�
θ − θ(0)

�
≈ d1:N (3)

where H1:N is the NK × p gradient matrix:

HT
1:N (θ) , �HT

1 (θ)· · ·HT
N (θ)

�
where Ht(θ) = ∇θht(θ) is the K×p gradient matrix of ht(θ).
According to the Gauss method, the iterative LS solution to
the linearized set (3) is:

θ(l+1) =

arg min
θ

d1:N −
�
h1:N (θ(l)) + H1:N (θ(l))

�
θ − θ(l)

��
where the superscript denotes the iteration number. Con-
sider the next measurements hN+1(θ) = dN+1 available at
time instance N + 1. In order to estimate θ we will use
all the available measurements simultaneously. Though we
could evaluate all (N+1)K equations at the current estimate

θ(l+1), we will do so only for the new equations. Namely,
instead of minimizing in the LS sense the following residual
norm

min
θ

d1:N+1−�
h1:N+1(θ

(l+1)) + H1:N+1(θ
(l+1))

�
θ − θ(l+1)

��
we will minimize a modified LS problem

min
θ

 d1:N−
dN+1−�

h1:N (θ(l)) + H1:N (θ(l))
�
θ − θ(l)

���
hN+1(θ

(l+1)) + HN+1(θ
(l+1))

�
θ − θ(l+1)

��  .

The reason for this approximation is to keep past solutions
intact, thus enabling a recursive solution to be derived. Now,
using stochastic approximation, i.e. replacing the iteration
index by the time index, a sequential algorithm is obtained.
To summarize the procedure, an estimate for θ at the cur-

rent time instance t (denoted by θ̂(t)) is obtained by solving
the following LS problem sequentially using the recursive LS
(RLS) procedure:

θ̂(t) = arg min
θ


264 H1(θ̂(0))

...

Ht(θ̂(t− 1))

375 θ − y
1:t

 (4)

where

y
1:t

=

264y
1
...
y

t

375 , 264 d1 − h1(θ̂(0)) + H1(θ̂(0))θ̂(0)
...

dt − ht(θ̂(t− 1)) + Ht(θ̂(t− 1))θ̂(t− 1)

375
with θ̂(0) the initial estimate for the parameter set. We note
that in many practical situations the parameter set θ might
slowly vary with time. In these cases a common practise is to
apply the RLS algorithm with a diagonal weight matrix that
uses a forgetting factor 0 < α ≤ 1 to weight past equations.

Another practical issue concerns the computational bur-
den. At each time instance new K equations become avail-
able, resulting a K ×K matrix inversion at each RLS iter-
ation. However, by properly varying the forgetting factor α
the computational complexity can be further reduced. This
procedure is beyond the scope of this paper.

2.3 Recursive Gauss (RG) Application

Denote the parameter set by θ = s. The RG procedure takes
the following form. Let,

Ht(s) =

2664 mT
1 + r1(t)

‖s‖ sT

...

mT
M + rM (t)

‖s‖ sT

3775 , y
t
= dt = 1

2

264 ‖m1‖2 − r2
1(t)

...

‖mM‖2 − r2
M (t)

375 .

Then ŝ(t) is evaluated by solving (4) with RLS and a forget-
ting factor α < 1.

3 Extended Kalman Filter (EKF)

The non-linear set in Eq. (1) can be also solved in the
Bayesian framework. The optimal minimum mean square
error (MMSE) solution becomes complicated in this non-
linear case, and sub-optimal solutions are called upon. Such
a solution is the extended Kalman filter (EKF). As the actual
movement model is not known in advance, we use a random
walk model instead�

s(t + 1) = s(t) + w(t)
r(t) = h(s(t)) + v(t)

(5)

where w(t) is the state driving noise and v(t) is the mea-
surement noise. h represents the nonlinear range difference
measurement equations, given by:

h(s) ,
264 ‖m1 − s‖ − ‖s‖

...
‖mM − s‖ − ‖s‖

375 . (6)

We note that the same approach was taken in [7], but in a
different context.

4 Equivalence of RG and EKF

It is well known that the RLS algorithm can be viewed as a
special case of the Kalman filter. We show now that the same
equivalence holds for the recursive Gauss algorithm, derived
in Section 2.2, and the extended Kalman filter. Using a
diagonal weight matrix and setting the forgetting factor to
α, the RG algorithm coincide with the EKF formulation for
the following state-space model,�

θ(t + 1) = θ(t)
dt = ht(θ(t)) + v(t)

The equivalence holds when R(t) , Cov(v(t)) = αI (where I
stands for the identity matrix) and with the initial condition
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Figure 1: Speaker trajectory

P0|−1 , Cov(θ(0)) = 1
α
P(0). Moreover, this formulation is

exactly the same as the one relating the RLS algorithm and
(linear) Kalman filter.

5 Experimental Study

In this section we perform simulative comparison of several
localization methods. To gain some insight on the obtain-
able performance of a microphone array with a small inter-
element spread relative to the source position, calculation of
the CRLB for a specific scenario is performed. This calcula-
tion leads us to a conclusion that the meaningful information
lies in the azimuth and elevation angles estimates. We pro-
ceed by assessing four localization methods. Two of them are
non-temporal (LCLS and Gauss iterations), and the other
two (RG and EKF) exploit the temporal information.

5.1 Test Scenario

A set of 6 microphone pairs is placed on a sphere of radius
0.3[m] around a reference microphone placed at the origin,
m0 = [0, 0, 0]T , at the following positions:

mT
1 =

�
0.3, 0, 0

�
, mT

2 =
�−0.3, 0, 0

�
, mT

3 =
�
0, 0.3, 0

�
mT

4 =
�
0, −0.3, 0

�
, mT

5 =
�
0, 0, 0.3

�
, mT

6 =
�
0, 0, −0.3

�
.

The speaker trajectory is set to be an helix with radius
R = 1.5[m] around the reference microphone. The speaker
movement speed is set to 0.5[m/s] and the total duration
of the movement is T = 30[sec]. In Cartesian coordinates,
the position of the speaker (in m0 coordinate system) as a
function of time in the interval t ∈ [0, T ] is given by:

x(t) = R cos(2πft), y(t) = R sin(2πft), z(t) = t
T
− 0.375

with f = 0.0529[Hz]. Along this trajectory, the overall
change of the azimuth angle is within θ ∈ [0◦, 570◦] and
of the elevation angle is within γ ∈ [−14◦, 22.5◦]. The entire
scenario is depicted in Fig. 1.

5.2 The Cramér-Rao Lower Bound

We calculate now the CRLB for the tested scenario. We
assume that the true range difference (or, equivalently, the
TDOA) readings are contaminated by Gaussian distributed
noise with zero-mean and standard deviation (STD) of σ =
0.0425[m]. This STD is equivalent to 1[sample] at a sample
rate of Fs = 8000[Hz]. The existence of directional interfer-
ences and reverberation phenomenon might cause high level
of noise correlation between microphone pairs and across

time. Moreover, in high noise level the TDOA estimation
algorithm might produce readings related to the directional
noise source, causing multi-modal noise distribution. Never-
theless, for simplicity, we assume (like Huang et al. [6]) that
the noise is uni-modal (Gaussian) distributed and tempo-
rally white. In this setup we further assume that the noise is
spatially white. Under these conditions, the CRLB is calcu-
lated for both Cartesian and polar coordinates. The result-
ing bound (in meters, for the Cartesian coordinates and the
radius, and in degrees for the azimuth and elevation angles)
is depicted in Fig. 2. Note, that the Cartesian coordinates,
as well as the radius, can not be accurately estimated in
this scenario. This conclusion corresponds with the results
presented in [6]. However the azimuth and elevation an-
gles might be estimated in high accuracy. Fortunately, for
camera steering applications, estimation of the azimuth and
elevation angles suffices. Note also that the presented CRLB
serves as a bound to the non-temporal methods alone, since
past measurements are disregarded at each time instance.
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Figure 2: CRLB results. Top: Cartesian coordinates and
radius. Bottom: Azimuth (θ) and elevation (γ) angles.

5.3 Simulation Results

The previously presented setup is evaluated by four localiza-
tion methods. The first is Linear Correction Least Squares
(LCLS), presented by Huang et al. [6]. The second is the
Gauss method (denoted G) with 3 iterations at each time in-
stance. The third is the recursive Gauss (RG) with forgetting
factor α = 0.85. The fourth is the EKF method evaluated
with random-walk model and driving noise STD of 0.1[m]
at each axis. The measurements covariance matrix is over-
estimated to 10σ2I. 1000 Monte-Carlo trials are performed.
The Root Mean Square Error (RMSE) of the angles estimate
is presented in Fig. 3. As can be seen, the Gauss iterations
and the LCLS method have comparable performance. How-
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ever the RG and the EKF methods remarkably outperform
them. We proceed by testing a more realistic scenario, where
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Figure 3: Uni-modal white Gaussian noise. Top: RMSE for
azimuth angle (θ). Bottom: RMSE for elevation angle (γ)

the measurement noise is not uni-modal and highly spatially
correlated. This is the case of directional interference which
might occur in a video conference scenario. This setup is
simulated by a Gaussian mixture distribution. The mixing
probabilities were set to 0.9 for the correct mode (speaker)
and 0.1 for the directional noise mode. For this purpose a
directional noise source is placed at the polar coordinates
[θ = 3π

4
, γ = π

4
, R = 1], as depicted in Fig. 1. Furthermore,

while in the noise mode, the measurement noise is set to be
spatially correlated with correlation matrix C , Cov{vt}
where the i, j-th (i 6= j) element of C is 0.9σ2 and σ2 along
the diagonal. As can be seen from Fig. 4, the performance
of all methods degrades. However, the EKF method clearly
outperforms the other methods. This is despite of the fact
that the EKF is not using the new noise model. Note that
the use of the random walk model in the EKF formulation
explains the divergence from the RG method and is more
appropriate for the tracking problem.

6 Conclusions

We presented both non-temporal and temporal algorithms
for talker localization and tracking. The Gauss method was
shown to have comparable performance to the LCLS method.
Two temporal methods were derived. One is within a non-
Bayesian framework (RG algorithm) and the other is within
the Baysian framework (EKF). The RG method is shown
to be a degenerate case of the EKF. The empirical results
demonstrate the effectiveness of the use of the temporal in-
formation.
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