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ABSTRACT

In a series of recent studies a new approach for applying the
Kalman filter to nonlinear system, referred to as Unscented
Kalman filter (UKF), was proposed. In this contribution1

we apply the UKF to several speech processing problems,
in which a model with unknown parameters is given to the
measured signals. We show that the nonlinearity arises nat-
urally in these problems. Preliminary simulation results for
artificial signals manifests the potential of the method.

1 INTRODUCTION

The recently proposed unscented transform (UT) is a method
for calculating the statistics of a random variable undergo-
ing a nonlinear transformation that was first suggested by
Julier et al. [1]. This method was used to generalize the
Kalman filter to nonlinear systems by Julier et al. [1] and
was further extended by Wan et al. [2] to problems where
both signals and parameters are jointly estimated. In [2]
(and other contributions) the nonlinearity arises from the
parameter production model.

In this contribution we further apply the UKF to sev-
eral speech processing problems, namely single microphone
speech enhancement and multi-microphone speech derever-
beration. We show that in these applications the nonlinear-
ity arises naturally, due to the signals and parameters multi-
plication, if both are given a dynamic model. The technique
is demonstrated by several simple examples.

In Section 2 the unscented transform and its application to
nonlinear Kalman filter are reviewed. Sections 3.1 and 3.2
discuss the application of the method to the problems of
single microphone speech enhancement and two microphone
speech dereverberation, respectively. We draw some conclu-
sions and discuss some further directions in Section 4.

2 PRELIMINARIES

2.1 The Unscented Transform (UT)

Let x be an L-dimensional random vector with mean x̄ and
covariance matrix Pxx. Let, y = f(x) be a nonlinear trans-
formation from the random vector x to another random vec-
tor y. The first and second order statistics of the vector

1This research work was carried out at the ESAT laboratory
of the Katholieke Universiteit Leuven, in the frame of the In-
teruniversity Attraction Pole IUAP P4-02, Modeling, Identifica-
tion, Simulation and Control of Complex Systems, the Concerted
Research Action Mathematical Engineering Techniques for Infor-
mation and Communication Systems (GOA-MEFISTO-666) of
the Flemish Government and the IT-poject Multi-microphone Sig-
nal Enhancement Techniques for handsfree telephony and voice
controlled systems (MUSETTE-2) of the I.W.T., and was par-
tially sponsored by Philips-ITCL.

y should be calculated. We briefly summarize the method.
The mean and covariance of x are represented by 2L + 1
points and weights
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is the l-th row or column of the

corresponding matrix square root, and λ = α2(L + κ) − L.
α determines the spread of the sigma points. α = 1 was
used throughout our simulations . κ is a secondary scaling
parameter. The choice κ = 3−L maintains the kurtosis of a
Gaussian vector. Throughout our simulations κ is set to 0.
β is used to incorporate prior knowledge of the distribution
(β = 2 for Gaussian distributions). A proper choice of these
parameters and its influence on the obtainable performance
is still an open topic. The mean and covariance of the vector
y are calculated using the following procedure,
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1. Construct the sigma points Xl, l = 0, . . . , 2L.

2. Transform each point: Yl = f (Xl) , l = 0, . . . , 2L.

3. Mean: Use weighted averaging, ȳ ≈P2L
l=0 W

(m)
l Yl.

4. Covariance: Use weighted outer product,

Pyy ≈
P2L

l=0 W
(c)
l (Yl − ȳ) (Yl − ȳ)T .

The benefits of using the UT are presented in [1] and [2].

2.2 The Application of the Unscented Transform
to the Nonlinear Kalman Filtering Problem

The Kalman filter is a recursive and causal solution for min-
imum mean square error (MMSE) state estimation in the
Gaussian and linear case. The Kalman equations are for-
mulated with the state-space notation and consist of two
stages. A propagation stage in which the mean and a priori
covariance of the respective state are predicted based on the
system dynamics and on the previous time instant estimate,
and an update stage in which this prediction is optimally
weighted with the new measurement. The error covariance,
interpreted as the amount of confidence we have in the esti-
mate, is propagated in a similar fashion.
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When the system dynamics and the measurement equa-
tion are linear, all the calculations involved are straightfor-
ward. The situation is more complex when the involved
equations are nonlinear. In this case, a method for propagat-
ing mean and covariance through nonlinearities is needed.

Let s(t) and �(t) be a signal state space vector and a pa-
rameter vector, respectively . u(t) and v(t) are innovation
and measurement noise sequences, respectively. Define also
the augmented state vector xT (t) =

�
sT (t) �T (t)

�
. Nonlin-

ear transition and measurement equations are given by,

x(t) = Φ (x(t− 1),u(t))

z(t) = h (x(t− 1),v(t)) .

In the past the extended Kalman filter (EKF), based on the
linearization of the equations, was used. This method might
be quite complex, as it involves the calculation of derivatives,
but yet not accurate enough, as only first-order approxima-
tion is applied.

A better method, proposed in [1], is to use the previ-
ously mentioned unscented transform in order to propagate
the mean and covariance through the nonlinearities. Fig. 1
summarizes the steps involved in Unscented Kalman filter
(UKF). The method consists of calculating the mean and co-
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Figure 1: Unscented Kalman filter: (a) Unscented transform.
(b) Propagation equations. (c) Inverse unscented transform.
(d) Update equations.

variance of the augmented state vectors undergoing a known
nonlinear transform by virtue of the unscented transform.
The complexity of the suggested method is quite low as only
an increase of dimensions by a factor of 2L + 1 is required.

3 APPLICATION TO SPEECH PROCESSING

In many model-based problems in speech processing (e.g.
single microphone speech enhancement, multi-microphone
speech enhancement and dereverberation) a problem of esti-
mating both the speech signal and various parameters arises.
This problem can be addressed in two ways. In the first, re-
ferred to by Wan et al. [2] as dual estimation, a two step ap-
proach is taken. In each time instant a Kalman filtering step
for the signal is applied based on the current estimate of the
parameters. In parallel a parameter estimate step is applied
based on the current signal state estimate. The parameter
estimation might be conducted using recursive methods such
as RLS or LMS. Alternatively, under the Bayesian frame-
work, the parameters can be given a dynamic model and the
Kalman filter can be applied. This approach will be used
throughout this work. The dual estimation method can be
seen as a sequential variant of the estimate-maximize (EM)
procedure, but no claims of optimality are valid. Discussion
on the subject can be found in [3]. The method is summa-
rized in Fig. 2 (top). The same problem can be reformulated

Speech Kalman Filter

Parameters Kalman Filter

ŝ(t|t)ŝ(t− 1|t− 1)
D

D
θ̂(t|t)θ̂(t− 1|t− 1)

z(t)

Speech + Parameters

ŝ(t|t)ŝ(t− 1|t− 1)

Kalman Filter

D

D
θ̂(t|t)

z(t)

θ̂(t− 1|t− 1)

Figure 2: Dual (top) and joint (bottom) estimation proce-
dures.

into a joint estimation problem. Note that most operations
involve parameter and state vector multiplications. Thus,
the problem of joint estimation of the speech and the param-
eters becomes nonlinear if both are modelled as stochastic
processes. We remark that as this nonlinearity is separable
this formulation might lead to the same performance as in
the dual scheme. This subject is still under investigation.
The approach of jointly estimating speech signal and its pa-
rameters is summarized in Fig. 2 (bottom).

3.1 Single Microphone Speech Enhancement

The problem of single-microphone speech enhancement was
extensively studied. Specifically, the use of Kalman filter for
estimating both the signal and the parameters is presented
by Gannot et al. [3]. By assuming AR model to the speech
signal and giving dynamic model to the AR parameters both
dual and joint schemes can be formulated. Each of the two
steps comprising the dual scheme is linear, while the joint
scheme consists of a single nonlinear step.

3.1.1 Signals Model

Let the signal measured by the microphone be given by
z(t) = s(t) + v(t), where s(t) represents the sampled speech
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signal and v(t) represents an additive background noise. We
shall assume a time varying AR model for the speech signal,
i.e.

s(t) = −
pX

k=1

αk(t)s(t− k) + gs(t)us(t) (1)

where the excitation us(t) is a normalized (zero mean unit
variance) white noise. gs(t) represents the innovation gain,
and α1(t), α2(t), . . . , αp(t) are the AR coefficients. The ad-
ditive noise v(t) is assumed to be a realization from a zero
mean white Gaussian stochastic with variance g2

v. Define,
gT

s (t) = [gs(t) 0 . . . 0] and hT
s = [1 0 . . . 0]. Then a state-

space form is given by,

sp(t) = Φs(t)sp(t− 1) + gs(t)us(t) (2)

z(t) = hT
s sp(t) + v(t)

where sT
p (t) =

�
s(t) s(t− 1) . . . s(t− p)

�
. The signal state

transition matrix Φs(t) is given by:

Φs(t) =

26666666664

−α1(t) −α2(t) · · · · · · −αp(t) 0
1 0 0 · · · · · · 0
...

. . .
. . .

...
...

. . .
. . .

...
...

. . .
. . .

. . .
...

0 · · · · · · · · · 1 0

37777777775
. (3)

3.1.2 Parameter model

Define the parameter vector �T (t) = [α1(t) α2(t) . . . αp(t) ]

and the innovation vector uT
�(t) =

�
uα1(t) uα2(t) . . . uαp(t)

�
with the respective covariance matrix Q�(t) =
E{u�(t)uT

�(t)}. The parameter state-space equations are,

�(t) = Φ��(t− 1) + u�(t) (4)

z(t) = hT
�(t)�(t) + gs(t)us(t) + v(t),

where, hT
�(t) =

�
s(t− 1) s(t− 2) . . . s(t− p)

�
and Φ� =

Ip×p or very close to it.

3.1.3 Dual Scheme

On the one hand, assuming that the signal and all the noise
parameters are known, which implies that Φs(t), hs and
gs(t) are known, the optimal causal MMSE linear state es-
timate, which includes the desired speech signal s(t), is ob-
tained using the Kalman filtering equations. On the other
hand, assuming the speech signal is known, i.e. hT

�(t) is
known, a Kalman filter for the parameter estimate might be
applied. Since both signal and parameters are not known,
the dual scheme presented in Fig. 2 may be applied. In each
time instant the AR parameters are estimated using the esti-
mated speech signal and the speech signal is estimated using
the current parameter estimate.

3.1.4 Speech Kalman Filter

Propagation equations:

ŝp(t|t− 1) = Φsŝp(t− 1|t− 1) (5)

P (t|t− 1) = ΦsP (t− 1|t− 1)ΦT
s + gsg

T
s

Kalman gain:

k(t) =
P (t|t− 1)hs

hT
s P (t|t− 1)hs + g2

v

(6)

Update equations:

ŝp(t|t) = ŝp(t|t− 1) + k(t)
h
z(t)− hT

s ŝp(t|t− 1)
i

(7)

P (t|t) = P (t|t− 1)− k(t)
h
hT

s P (t|t− 1)hs + g2
v

i
kT (t)

3.1.5 Parameters Kalman Filter

Propagation equations:

�̂(t|t− 1) = Φ��̂(t− 1|t− 1) (8)

P�(t|t− 1) = Φ�P�(t− 1|t− 1)ΦT
� + Q�

Kalman gain:

k�(t) =
P�(t|t− 1)H�

hT
�P�(t|t− 1)h� + g2

s(t) + g2
v

(9)

Update equations:

�̂(t|t) = �̂(t|t− 1) + k�(t)
h
z(t)− hT

��̂(t|t− 1)
i

(10)

P�(t|t) = P�(t|t− 1)−
k�(t)

h
hT
�P�(t|t− 1)h� + g2

s(t) + g2
v

i
kT
�(t).

The dual scheme suggested in Fig. 2 (top) is then used.

3.1.6 Joint Scheme

An augmented state vector of the speech and the parameters
is constructed, xT (t) =

�
sp(t) �(t)

�
. Then,

x(t) =

�
Φs 0
0 Φ�

�
x(t− 1)| {z }

nonlinearity

+

�
gs(t)us(t)
u�(t)

�
(11)

z(t) =
�
1 0 0 . . . 0

�
x(t) + v(t).

This set of equation is nonlinear since it involves a multipli-
cation of the speech state space and the transition matrix
comprised of the parameters process. So, the joint scheme
suggested in Fig. 2 (bottom) can be used.

3.1.7 Results

Time varying Gaussian AR process (4 coefficients) embedded
in white Gaussian noise with input SNR level of about 20dB
is processed by the joint Kalman scheme2. The noise level is
estimated during non-signal portions of the noisy signal. The
tracking ability of the procedure is presented in Fig. 3. The
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Figure 3: Tracking ability of the parameters of an AR process
embedded in white noise.

performance with real speech signals is still to be determined.

2All Simulations in this paper are implemented by modifying
R. van der Merwe et al. [4] code, written in Matlab c© language.
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3.2 Two Microphone Speech Dereverberation

In the two channel dereverberation problem a speech signal,
modelled as an AR process, is filtered by an acoustical trans-
fer function (ATF), modelled as an FIR filter. Noise is then
added to the output constructing the noisy and reverberated
speech signals, as depicted in Fig. 4.

g1e1(t)

g2e2(t)

z2(t)

s(t)

A1(e
jω)

A2(e
jω)

P
P

z1(t)

Figure 4: Two channel dereverberation problem.

3.2.1 Signals Model

The reverberated and noisy signals presented in Fig. 4 are
given by the following model,

s(t) = −
pX

k=1

αks(t− k) + gus(t)us(t) (12)

z1(t) =

na−1X
k=0

a1(k)s(t− k) + g1e1(t)

z2(t) =

na−1X
k=0

a2(k)s(t− k) + g2e2(t).

Thus, we have again a problem of estimating both the speech
signal and the following model parameters,

�T (t) =
�
�(t) gus(t) a1(t) a2(t) g1 g2

�
.

3.2.2 Joint Speech and Parameters Estimation

Define,

sT
na

(t) =
�
s(t) s(t− 1) · · · s(t− na + 1)

�
gT

s (t) =
�
gs(t) 0 · · · 0

�
uT
�(t) =

�
uα1(t) uα2(t) · · · uαp(t)

�
uT
a1(t) =

�
ua1

1
(t) ua2

1
(t) · · · ua

na
1

(t)
�

uT
a2(t) =

�
ua1

2
(t) ua2

2
(t) · · · ua

na
2

(t)
�

and Φs(t) an na × na signal transition matrix having equiv-
alent structure to the one presented in (3). Then, the aug-
mented transition-measurement equations can be written as,264 sna(t)
�(t)
a1(t)
a2(t)

375 =

264Φs(t) 0 0 0
0 Ip 0 0
0 0 Ina 0
0 0 0 Ina

375264 sna(t− 1)
�(t− 1)
a1(t− 1)
a2(t− 1)

375
| {z }

nonlinearity

+

264 gsus(t)
u�(t)
ua1(t)
ua2(t)

375
�

z1(t)
z2(t)

�
=

�
a1(t) 0 0 0
a2(t) 0 0 0

�264 sna(t)
�(t)
a1(t)
a2(t)

375
| {z }

nonlinearity

+

�
g1e1(t)
g2e2(t)

�

which is a nonlinear set of equations, fitting the UKF frame-
work.

3.2.3 Results

For a low level white noise signal, which variance is esti-
mated from signal free segments, the tracking ability of the
algorithm is presented in Fig. 5. It is worth mentioning that
the presented problem is a very simple one, the order of the
AR process is 1 and the filters a1, a2 are 3 taps long. The
SNR value is very high. Even in this simple case convergence
is not guaranteed.
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Figure 5: Tracking ability of the parameters of the derever-
beration problem.

4 DISCUSSION

In this paper we applied the newly proposed UKF to two
speech processing problems. Results show that the method is
applicable to the problems in hand. Nevertheless, for a com-
prehensive test, it should be further applied to real speech
signals embedded in higher noise levels. Performance lim-
itations and optimality issues of the suggested method are
under current research.
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