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ABSTRACT 
For the transmission electron microscope, the transfer 
of the complex specimen exit wave t,o observed inten- 
sities is modelled as a Volt.erra system function. This 
system function includes t,hc effect of microscope fluc- 
tuations and is used in a parameter estimation based 
reconstruction of t.he exit wave. The numerical opti- 
mizat,ion employed in the parameter cstimat,ion proce- 
dure is carried out directly with respect, t.o bot.11 the 
real and the complex valued paramct.crs. 

1. INTRODUCTION 

In optics, Volterra kernels or rather their Fourier trans- 
forms, the Volterra system functions, are called trans- 
mission cross coefficients and are used to describe com- 
binations of spat.ially static nonlinear and dynamic lin- 
ear operations on complex waves [ 11. The spatial coor- 
dinate is usually tw@dimensional. 

In this paper, the system funct,ion of the transmission 
electron microscope (TEN) is tliscusscd. The purpose 
is to show how the system function can be used for 
reconstruction of the specimen exit wave. ‘rhis is the 
complex valued spatial wave at the exit, interface of t,he 
specimen investigated. It, is used in t.he assessing of 
material structure. The rclat,ion of t.hc observed im- 
age in the TEM and the exit wave t.o be reconstructed 
is as follows. The magnifying system of the TEM is 
modelled as a two-dimensional linear transfer function. 
The effect of this linear transfer is called blurring. The 
detection of the magnified wave is a modulus square 
operation. The result of this operation! in which t.he 
phase of the wave is lost, is the tletect,cd TEM image. 
Thus the detected image consists of intensities observed 
as an electron count. per pixel. The courlt,s arc supposed 
to be Poisson distributed. 

The waves considered in this paper are spatially pe- 
riodic since the specimen is supposed to be a homo- 
geneous crystal. In the chosen reconstruction method, 

the periodicity is used as follows. Since the wave is peri- 
odic, it is defined by it.s Fourier cocflicients. Therefore, 
t.he reconstruction may be reformulated as estimat- 
ing t.hc parameters, that is, the Fourier coefficients of 
the wave from t,hc error corrupted image observations. 
From t.hc cst,imat.cd Fourier coefficients the estimate of 
the wave is obtained by Fourier synthesis. As a result 
of the microscope properties, the spatial bandwidths 
arc st,rictly limited and, therefore: t.he total number of 
Fourier coefficients is bounded. For various reasons, in 
t.his frequency domain parameter estimation (FDPE) 
method 121 and in alt.ernative methods proposed in the 
literature [3]-[6], the wave is reconstructed from a series 
of images. Each of the images is measured at a differ- 
ent defocus. Since the transfer function depends on the 
defocus and this dependence is known, each of the im- 
ages corresponds t.o a different, known transfer fmlction. 
The series of images is called defocus series. The linear 
transfer and the ~r~ochlus square operation combined 
represent a homogeneous second order Voltcrra system 
function which is known but different. for each dcfo- 
cus. This known system function operat,es on the wave 
Fourier coefficient spectrum. Thus for each defocus the 
observations are a known quadratic function of the un- 
known, complex Fourier c0efficient.s of t.he wave. These 
functions arc fit.ted simult,aneously for all defoci. If bhis 
fit,ting is carried out in the least. squares sense, the least 
squares crit,erion is a quartic pOlynOI~lii~l in the complex 
Fourier coefficients sought. and cor1sist.s of as many par- 
tial sums as there are dcfoci employed. The main ad- 
vant.agc of the FDPE approach is that. the number of 
parameters is small and independent of t,he number of 
pixels processed. In t.hc methods proposed in the litera- 
ture, each of the many pixels processed is an unknown. 
In addition, in the FDPE approach USC can be made 
of t.hc statistical knowledge about the pixels to define 
maximum likelihood estimators which are asympt.oti- 
tally most precise. Thus the FDPE method solvcs~ in 
principle, the periodic wave reconstruction from error 



corrupted observations. 
The FDPE method sketched assuxnes the defoci cm- 

ployed to be constants. In practice, they fluctuate and! 
as a result, so do the transfer functions. The FDPE 
method has in common with the most important recon- 
struction method currently in use [3] that t.hese defo- 
cus fluctuat;ions are not included in the transfer model. 
In [3] this is corrected for by weighted addition of re- 
construction results according to the probability of the 
defocus values. Here, a different approach is followed. 
USC is made of the fact that t,he average effect of the 
defocus fluctuations can be included in closed form in 
the Voltcrra system fun&on [7]. The including does 
not complicate the estimation procedure. For example, 
the least squares criterion remains a numerically wcll- 
behaved quart,ic polynomial. This is important since in 
FDPE the least squares method is always used to ci- 
t.her produce the final estimates or the initial values for 
the numerical maximization of the likelihood function. 

The parameters to be estimated in the FDPE 
method are the Fourier coefficients and possibly the 
spat.ial periods of the complex exit, wave. These quan- 
t.ities are id1 complex valued, except the COIlStiHlt term 
of the wave and the periods. Therefore, the likelihood 
function and the least squares crit,erion are both real 
fuxlctions to be optimized with respect to a mixture of 
real and complex variables. For that purpose, a special 
Newt.on method has been developed. It is an exten- 
sion of the purely complex Newton method proposed 
in ,[8]. The advantages of t.his mixed real complex opt,i- 
mization over purely real optimization with respect to 
the real variables and the separate real and imaginary 
parts of the complex variables are a drastic simplifica- 
tion of the resulting expressions for the Hessian matrix 
and t,he gradient employed and the resulting simplicity 
of the codes. 

2. NONLINEAR TRANSFER AND 
IMAGING IN THE TEM 

Suppose that the spatially periodic, complex valued 
exit wave of the specimen in a TEM is described by 

k,l 

Here, x and y are t.hc spatial coordinates, j = &i 
and vk and u1 are equal to k/t and l/,17 where < and 
q are the periods in the x and the y direction, respcc- 
tively, k and 1 axe the harmonic numbers and the Ykl 
are the Fourier coefficients which are all complex ex- 
cept the constant term yoo. The spectrum of the ykl 
is not Hermitian since f (2:; y) is complex valued. The 

exit wave is magnified by a linear system with a tu-tr 
dimensional linear transfer function H (k, 1, D) which 
blurs the wave. The variable D represents the defocus 
of the TEM. The result after magnification is 

g(z,y,D) = 1 H(k,l,D) +fklej2n(vkz+v’y) (2) 
k./ 

The image is the intensity of this wave as a function of 
.X and y. It. is described by 

Then from (2) and (3) it follows that it is equal to 

which represents a homogeneous second-order Volterra 
description [9] of t.hc nonlinear transfer in the TEM. 
Leaving out the frequency independent magnification, 
a general description of the system function H (k, 1, D) 
of a TEM is 

H (k, 1, D) = 2 b*l+&iD) (5) 

with fikl = $C,x3 (V; + z$)’ and &l = 7rx (Y; + VT) 
where C, is the spherical aberration constant and X is 
the elect,ron wave length [7]. 

The observations w(p,q) of the image are made in 
a number of discrete points (xp, yQ), p = 1, . . . , P and 
q = 1, . . . , Q, These observations are electron counts 
which are assumed to be Poisson distributed stochas- 
tic variables. Their expectations & [W (p, q)] are equal 
to the exact image 1(x,, yqr D) described by (4). Fur- 
thermore, the observations are usually made such that 
they may be considered to be statistically indepen- 
dent. The defocus series of images is made at the 
defoci D,, m = 1, . . ..M. The problem solved by 
t.he FDPE method may be summarized as estimating 
the Fourier coefficients yk[ from observations zu(p: q, m) 
with p = 1, . . . . P, q = l! . . . . Q and m = 1, . . . . M where 
the index m has been added to define the defocus value 
employed. 

3. DEFOCUS SPREAD AND SYSTEM 
FUNCTION 

In the previous section the defocus value was consid- 
ered a constant. However, even if the fluctuations of the 
voltages and currents in the TEM would be negligible, 
t.here would still be defocus fluctuations, called defocus 



spread, resulting from energy spread of the electrons. 
Typically, the se A uctuat,ions have a bandwidth of tens 
of MHz. They may be incorporated in the considera- 
tions of the previous section by everywhere substituting 
D + d for D where D is now the expectation of the de- 
focus and d is the zero mean fluctuation superimposed 
on it. Generally, it is assumed that t.he d <arc normally 
distributed while their standard deviation 0 is quite 
ac:curat,ely known. By Eq. (5) 

H (k, 1, D + d) = H (k, 1, D) ,j fl,,d (6) 

This equation shows that the system function has be- 
come a stochastic variable itself. As a result the inten- 
sity described by Eq. (4) becomes I(z, y! D + d), which 
is a stochastic variable. Equation (4) shows that the 
computation of the expectation &d [I (2, y, D + d)] re- 
quires the computation of 

&[H(h,h,D+d) H*(hbrD+d)] = 

H(kl:ll,D) H* (k2,12,D) &d [“iA’12d] (7) 

with Ap,, = plc,l, --pk,[, = 7rX (v& + $I - v:, - YZ) 
where USC has been made of Eq. (6). The expression 
fd [,jAW] is recognized as the value of the character- 
istic function of d at the point ABra. Therefore, since d 

is normally distributed, it is equal to e-i(Af112u)2 [lo]. 
Combining this result with Eqs (4) and (7) yields 

I(z,y,D) =&[I(w,D+d)] = 

= c c Yk,l* G212 x 
kl,ll k2J2 

x H(h,h,D) H*(kzJ2,D) 

x ej27r{ (3 -vk*)r+(m, -W2)Y} 

The last exponcmial factor in the summand of this 
expression results from the defocus spread. It is seen bo 
increasingly limit the bandwidth as the standard devi- 
ation of the defocus variations increases. Let the quan- 
tity I (zP, yq, Dm) represent the expectation of the im- 
age observations w(p, q, m) where the index m has been 
added as a reference to the defocus D,. Then an obser- 
vation w(p, 4, m) is equal to the sum of I (z+, yq, Dm) 
and a zero mean stochastic error. After replacing the 
ylcl in Eq.(8) by corresponding variables ckl, the model 
is obtained to be fitted with respect to the variables ckl 
to the observations w(p, q, m). This will be discussed 
in the next section. 

4. MIXED REAL COMPLEX PARAMETER 
ESTIMATION 

Equations (4) and (8) 1 c escribc the expectations of the 
image with and without inclusion of defocus spread, re- 
spectively. Comparing thcsc equat.ions shows that the 
including of the defocus does not seriously complicate 
t.hc model to be fitted. It is still a homogeneous second 
order Voltcrra model. If least squares model fitting is 
chosen, the criterion to be minimized is described by 

This is a quartic multivariable polynomial in the 
Fourier coefficients ckl. The coefficient. ccc is real. All 
other coefficients are complex valued. Therefore, the 
least squares crit,erion described by Eq. (9) is a real 
function of one real variable and a number of com- 
plex variables. If, in addition the periods < and r] 
are mlknown, they have to be estimated along with 
the Fourier coeflicients. Then t,he number of real 
parameters increases to three. Let t,hc vector T = 

[x Y co,]’ or. if the periods are known; T = ~00 
represent the real parameters in these cases, where X 
and Y are variables corresponding to the periods E and 
q, respect;ivcly. Furt~hcrmore, let vcct,or c be the vector 
of all complex ckl in both cases. Then the estimating 
problem could be reformulated as t,hc estimation of T 
and all real and imaginary parts of the elements of c. 
The disadvantage of this approach is that it leads to 
complicated expressions. Here a simpler alternative is 
proposed: the direct. Wing of the model described by 
Eq. (8) wit.11 respect to t,he mixt.ure of real and complex 
parameters X, Y, coo and the elements of c. This is a 
relatively straightforward extension of the purely com- 
plcx optimization discussed in [8]. Define the mixed 
real complex vector of parameters t as 

t = ( ?-T CT c* )’ (10) 

where the superscripts T and H denote transposition 
and complex conjugate transposition, respectively. No- 
tice that both the elements of c and their complex 
conjugates are present in t. Suppose that f(t) is a 
real function of the elements of t such as the least 
squares criterion. Then the vector a!(t)/% is defined 
as the complex gradient vector of f (t) [8]. The ma- 
trix of second order derivatives of f(t) is defined as 
t32j(t)/at* dtT [8] where the superscript * denotes com- 
plex conjugation. Using this gradient and Hessian ma- 
trix, the mixed real complex Newton optimization step 
AtN becomes [8] 

Atlv = - (&)-I (g) (11) 



where, for simplicity, the argument of f (t) has been 

omitted. In the same way, other gradient met~hods for 
numerical opt,imization can be transformed int,o mixed 
real complex ones. Currently, the software for wave re- 
construction using real parameter estimation described 
in [2] is rewritt.en in t,his mixed real complex form. 

5. CONCLUSIONS 

It has been shown that the nonlinear tr,ansfcr of the 
complex exit wave to the detected image in t,he trans- 
mission electron microscope can be described by a rela- 
tively simple, homogeneous second order Volterra sys- 
tem function. Using t,his system function? a straightfor- 
ward method for reconstruction of t,he wave has been 
proposed based on parameter estimation. It has also 
been shown that defocus spread can be incorporated 
in the system function. Compared to existing recon- 
struction methods this is a simplification. -4 furt,hcr, 
numerical, simplification has been achieved by estimat- 
ing the complex valued parameters of t,he wave directly 
instead of by estimat,ing separately their real and imag- 
inary parts. 
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