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ABSTRACT

For the transmission electron microscope, the transfer
of the complex specimen exit wave to observed inten-
sities is modelled as a Volterra system function. This
system function includes the effect of microscope fluc-
tuations and is used in a paramecter estimation based
reconstruction of the exit wave. The numerical opti-
mization employed in the parameter cstimation proce-
dure is carried out directly with respect to both the
real and the complex valued paramcters.

1. INTRODUCTION

In optics, Volterra kernels or rather their Fourier trans-
forms, the Volterra system functions, are called trans-
mission cross coefficients and are used to describe com-
binations of spatially static nonlinear and dynamic lin-
ear operations on complex waves [1]. The spatial coor-
dinate is usually two-dimensional.

In this paper, the systcim function of the transmission
electron microscope (TEM) is discussed. The purpose
is to show how the system function can be used for
reconstruction of the specimen exit wave. This is the
complex valued spatial wave at the exit interface of the
specimen investigated. It is uscd in the assessing of
material structure. The relation of the observed im-
age in the TEM and the exit wave to be reconstructed
is as follows. The magnifying system of the TEM is
modelled as a two-dimensional linear transfer function.
The effect of this linear transfer is called blurring. The
detection of the magnified wave is a modulus square
operation. The result of this operation, in which the
phase of the wave is lost, is the detected TEM image.
Thus the detected image consists of intensities observed
as an electron count per pixel. The counts arc supposed
to be Poisson distributed.

The waves considered in this paper are spatially pe-
riodic since the specimen is supposed to be a homo-
geneous crystal. In the chosen reconstruction method,

the periodicity is used as follows. Since the wave is peri-
odic, it is defined by its Fourier cocflicients. Therefore,
the reconstruction may be reformulated as estimat-
ing the paramcters, that is, the Fourier coefficients of
the wave from the error corrupted image observations.
From the estimated Fourier coefficients the estimate of
the wave is obtained by Fourier synthesis. As a result
of the microscope propertics, the spatial bandwidths
are strictly limited and, therefore, the total number of
Fourier cocfficients is bounded. For various reasons, in
this frequency domain parameter estimation (FDPE)
method [2] and in alternative methods proposed in the
literature [3]-[6], the wave is reconstructed from a series
of images. Each of the images is mecasured at a differ-
ent defocus. Since the transfer function depends on the
defocus and this dependence is known, cach of the im-
ages corresponds to a different known transfer function.
The series of images is called defocus series. The linear
transfer and the modulus squarc operation combined
represent a homogeneous second order Volterra system
function which is known but different for each defo-
cus. This known system function operates on the wave
Fourier coefficient spectrum. Thus for cach defocus the
observations are a known quadratic function of the un-
known, complex Fourier coeflicients of the wave. These
functions are fitted simultaneously for all defoci. If this
fitting is carried out in the least squares sense, the least
squares criterion is a quartic polynomial in the complex
Fourier coefficients sought and consists of as many par-
tial sums as there are defoci employed. The main ad-
vantage of the FDPE approach is that the number of
parameters is small and independent of the number of
pixels processed. In the methods proposed in the litera-
ture, each of the many pixels processed is an unknown.
In addition, in the FDPE approach use can be made
of the statistical knowledge about the pixels to define
maximum likelihood estimators which are asymptoti-
cally most precise. Thus the FDPE method solves, in
principle, the periodic wave reconstruction from error



corrupted observations.
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ployed to be constants. In practice, they fluctuate and,
as a result. so do the transfer functions. The FDPE
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method has in common with the most important recon-
struction method currently in use [3] that these defo-
cus fluctuations are not included in the transfer model.
In [3] this is corrected for by weighted addition of re-
construction results according to the probability of the
defocus values. Here, a different approach is followed.
Use is made of the fact that the average cffect of the
defocus fluctuations can be included in closed form in
the Voiterra system function {7]. The including does
not complicate the estimation procedure. For example,
the least squares criterion remains a uumcricaiiy well-

behaved quartic polynomial. This is important since in
FDPE the least sanares method is alw rays used to oi-
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ther produce the final estimates or the initial values for
the numerical maximization of the likelihood function.

The parameters to be estimated in the FDPE
method are the Fourier coefficients and possibly the
spatial periods of the complex exit wave. These quan-
tities are all complex valued, cxcept the constant term
of the wave and the periods. Therefore, the likelihood
function and the least squares criterion are both real
functions to be optimized with respect to a mixture of
real and complex variables. For that purposc a special
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mization over purely real optimization with respect to
the real variables and the separate real and imaginary
parts of the complex variables are a drastic simplifica-
tion of the resulting expressions for the Hessian matrix
and the gradient employed and the resulting simplicity
of the codes.
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Suppose that the spatially periodic, complex valued
exit wave of the specimen in a TEM is described by
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tively, k and [ are the harmonic numbers and the 7,
are the Fourier coefficients which are all complex ex-
cept the constant term vq,. The spectrum of the vy,
is not Hermitian since f (z,y) is complex valued. The

exit wave is magnified by a linear system with a two-
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blurs the wave. The variable D represents the defocus
of the TEM. The result after magnification is
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The image is the intensity of this wave as a function of
x and y. It is described by
2
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Then from (2) and (3} it follows that it is equal to
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which represents a homogeneous second-order Volterra
description [9] of the nonlinear transfer in the TEM.
Leaving out the frequency independent magniﬁcation,
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of a TEM is

H (k, I, D) — ej(akt+ﬁkzD) (5)
with ag = ZCA3 (12 +13)” and By, = 7 (V3 + vd)
where C; is the spherical aberration constant and A is
the electron wave length [7).

The observations w(p,q) of the image are made in
a number of discrete points (xp,y4), p = 1,..., P and
g = 1,...,Q. These observations are electron counts
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thermore, the observations are usually made such that
they may be considered to be statistically indepen-
dent. The defocus series of images is made at the
defoci D,,, m = .M. The problem solved by
the FDPE method may be summarized as estimating
the Fourier coefficients vy, from observations w(p, g, m)
withp=1,.,P,¢q=1,..,Q and m = 1,..., M where
the index m has been added to define the defocus value
employed.
3. DEFOCUS SPREAD AND SYSTEM
FUNCTION

In the previous section the defocus value was consid-
ered a constant. However, even if the fluctuations of the
voltages and currents in the TEM would be negligible,
there would still be defocus fluctuations, called defocus



spread, resulting from energy spread of the clectrons.
Typically, these fluctuations have a bandwidth of tens
of M Hz. They may be incorporated in the considera-
tions of the previous section by everywhere substituting
D +d for D where D is now the cxpectation of the de-
focus and d is the zero mean fluctuation superimposed
on it. Generally, it is assumed that the d arc normally
distributed while their standard deviation ¢ is quite
accurately known. By Eq. (5)

H (k,l,D+d) = H (k,l, D) ePud (6)

This equation shows that the system function has be-
come a stochastic variable itself. As a result the inten-
sity described by Eq. (4) becomes I(z,y, D + d), which
is a stochastic variable. Equation (4) shows that the
computation of the expectation &4 (I (z,y, D + d)] re-
quires the computation of

gd [H(klallvD+d) H* (k2)l2,D+d)] =
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with AB 15 = Bk,1, = By, =TA (Vil + l/,21 — 1/%2 - 1/122)
where usc has been made of Eq.(6). The expression
Ed [ej ABry ‘i] is recognized as the value of the character-
istic function of d at the point AfB;,. Therefore, since d
is normally distributed, it is equal to e~ 3(88120) [10].
Combining this result with Eqs (4) and (7) yields
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The last exponential factor in the summand of this
expression results from the defocus spread. It is seen to
increasingly limit the bandwidth as the standard devi-
ation of the defocus variations increases. Let the quan-
tity I (zp,yq, Dm) represent the expectation of the im-
age observations w(p, ¢, m) where the index m has been
added as a reference to the defocus D,,,. Then an obser-
vation w(p, q,m) is equal to the sum of I (zp,¥q, Dm)
and a zero mean stochastic error. After replacing the
v in Eq.(8) by corresponding variables cg;, the model
is obtained to be fitted with respect to the variables cg;
to the observations w(p,q,m). This will be discussed
in the next section.

4. MIXED REAL COMPLEX PARAMETER
ESTIMATION

Equations (4) and (8) describe the expectations of the
image with and without inclusion of defocus spread, re-
spectively. Comparing these equations shows that the
including of the defocus does not seriously complicate
the model to be fitted. It is still a homogeneous second
order Volterra model. If least squares model fitting is
chosen, the criterion to be minimized is described by

Z Z {w (p,g,m) —I(2p,yq, Dm)2} (9)
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This is a quartic multivariable polynomial in the
Fourier coefficients ¢i;. The coefficient cgg is real. All
other coefficients are complex valued. Therefore, the
least squares criterion described by Eqg.(9) is a real
function of one recal variable and a number of com-
plex variables. If, in addition, the periods £ and 7
are unknown, they have to be estimated along with
the Fourier coefficients. Then the number of real
parameters incrcases to three. Let the vector r =
[ X Y o ]T or, if the periods are known, r = cgo
represent the real parameters in these cases, where X
and Y are variables corresponding to the periods £ and
n, respectively. Furthermore, let vector ¢ be the vector
of all complex cg; in both cases. Then the cstimating
problem could be reformulated as the estimation of r
and all real and imaginary parts of the elements of c.
The disadvantage of this approach is that it leads to
complicated expressions. Herc a simpler alternative is
proposed: the direct fitting of the model described by
Eq.(8) with respect to the mixture of real and complex
parameters X, Y, ¢gg and the elements of c. This is a
relatively straightforward extension of the purely com-
plex optimization discussed in [8]. Define the mixed
real corplex vector of parameters ¢ as

t=(rT T H )T (10)

where the superscripts T' and H denote transposition
and complex conjugate transposition, respectively. No-
tice that both the elements of ¢ and their complex
conjugates are present in ¢. Suppose that f(t) is a
real function of the elements of ¢ such as the least
squares criterion. Then the vector 8f(¢)/8t is defined
as the complex gradient vector of f(t) [8]. The ma-
trix of second order derivatives of f(t) is defined as
02 f(t)/0t* 8t [8] where the superscript * denotes com-
plex conjugation. Using this gradient and Hessian ma-
trix, the mixed real complex Newton optimization step
Aty becomes (8]
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where, for simplicity, the argument of f (#) has been
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omitted. In the same way, other gradaiernu methods for
numerical optimization can be transformed into mixed
real complex ones. Currently, the software for wave re-
construction using rcal parameter estimation described

in [2] is rewritten in this mixed real complex form.

5. CONCLUSIONS

It has been shown that the nonlinear transfer of the
complex exit wave to the detected image in the trans-
mission electron microscope can be described by a rela-
tively simple, homogeneous sccond order Volterra sys-
tem function. Using this system function, a straightfor-
ward method for reconstruction of the wave has been
proposed based on parameter estimation. It has also
been shown that defocus spread can be incorporated
in the system function. Compared to existing recon-
struction methods this is a simplification. A further,
numerical, simplification has becn achieved by estimat-
ing the complex valued parameters of the wave directly
instead of by estimating separately their rcal and imag-
inary parts.
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