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ABSTRACT 

This contribution is a study of a method for identifica- 
tion of nonlinear stochastic models. Models generating 

electroencephalograms (EEG), based on neurophysio- 
logical knowledge are studied, [l]. A model-based anal- 
ysis of single evoked potentials is also suggested. The 
main idea behind the identification is to use an inverted 
model, since no general predictor is available for non- 
linear models. A maximum likelihood (ML) method is 

used to estimate the structure and the parameters of 
the model. To utilize a priori knowledge a ‘grey-box’ 
approach is taken. 

1. THE EEG GENERATING MODEL 

A neurophysiologically-based model, developed by Jan- 
sen and Rit [l], is the basis for this project. The model 
of a cortical column is simulating electrical brain activ- 
ity. A set of nonlinear differential equations describes 
the model as 

Figure 1: Detailed block diagram of the SISO system. 

h,(t) = Aatemat, t 2 0 

k(t) = m(t),@ + de4t) (1) 

y(t) = h(4%@)? (2) 

where z(t) is a state vector, 19 is the parameter vec- 
tor.to be estimated and y(t) denotes the output. The 

model input is represented by w(t) and is characterized 
by a probability density function &,. In this case we 
consider a zero mean gaussian process with unit vari- 
ance. The parameters, mean m and standard deviation 
u are included in the parameter vector and need to be 
estimated. 

where A is included in 8 and a is considered to be 
known. The direct connections are only affected by a 
connectivity gain Ci. A sigmoid function described by 

S[Xi(t)] = 2e0/(1 + e T(V0-S&))) 
, 

causes the nonlinear behavior of the model. Only some 
of the parameters in (5) are estimated while others are 

treated as known. The output y(t) is the difference be- 
tween the outputs of the excitatory and the inhibitory 
transfer functions. 

The cortical column is modeled by a population of 
main cells interacting via feedback branches, as shown 
in Figure 1. Each branch is either direct or represented 
by a transformation. This transformation, of an aver- 
age pulse density into an average potential, may be 
either excitatory h,(t) or inhibitory hi(t). The excita- 
tory transfer function, e.g., is described by 

Both single input, single output (SISO) models and 
multi-input, multi-output (MIMO) models are tested. 
The tested MIMO model, shown in Figure 2, consists 
of two coupled SISO models Si. The SISO models 
are connected by an excitatory transfer function and a 
connectivity gain. The MIMO model with two inputs 

and two outputs is also used for exploring flash visual 
evoked potentials (FVEPs). To simulate a FVEP a 
pulse-like input component (PLIC), described by 

h,(t) = 0, t < 0 (3) P(t) = 0, t < to (6) 

(4) 



Figure 2: Block diagram of the MIMO system. Si is a 
SISO system described in Figure 1. 

P(t) = q(y)nemF, t 2 to (7) 

represents the impulse density related to the visual in- 
put, [l]. Only the parameter q, representing the am- 

plitude, is estimated. The PLIC is added to one of the 
inputs of the MIMO model. 

2. IDENTIFICATION 

‘Grey-box’ identification utilizes a priori information 
along with experimental data. The basic ideas for in- 
teractive design and identification of a stochastic model 
are suggested in [2]. The procedure is based on se- 

quences of testing of gradually refined model equations. 
Hence, the procedure starts with a simple model which 
is later expanded. In this study the following proce- 

dure is used, [3], to achieve the simplest possible model 
structure, not contradicted by data. 

1. Initialization: A first, ‘root’ model is constructed. 

It is supposed to be as simple as possible. Initial 
parameter values are also set. 

2. R.epeat while the model is falsified: 

(4 

(b) 

cc> 
(4 

Specify a tentative free parameter set and 
fit the free parameters. If no more free pa- 
rameters are available, then expand the set 
of equations. 

Test the model against a set of alternative 

models. 

Evaluate the test statist.ics. 

Appraise the model, if any of the alterna- 
tives is better, then falsify the model. Go 
back to 2.(a) starting with the best of the 
alternative models. 

The above described procedure is not fully automated 
and therefore needs a certain interaction by the user. 
Such interaction involves the selection of alternative 
models and how the initial parameter values are chosen. 

The testing, under point 2.(b), is based on the like- 
lihood of the model, parameterized by 8, and that of 
the alternative model, parameterized by 8’. Here, the 
likelihood of the parameter vector 8 is written as 

w I Y) = 4,(~ 10 )I (8) 

where 4, is the conditional probability density function 
(PDF) of y given the parameter vector 8. As shown in 

[4], &, can be computed as 

4d~ 18 ) = dhw(~)) v . 
I I 

(9) 

where 4, is the PDF of w. In (9), W denotes the 
inverse of the relation between the input and the out- 
put. The minimization of the negative log likelihood 
function 

Q(O) = - l%L(4Y) (10) 

is performed for each iteration by a Levenberg Mar- 
quardt algorithm. 

The falsification test, 2.(c), is based on the likeli- 
hood ratio. The confidence in a reject decision of the 
model represented by B vs. an alternative model rep- 
resented by 8’ is 

Y = x32Q@ - 2&@)1. (11) 
In (lo), 6 and 6’ minimizes the loss functions Q(6) and 

Q(k) respectively. If y > (1 - the tislc level), then the 
model parameterized by 8 will be rejected. In (ll), r 
is the number of degrees of freedom, r = dim(0’) - 

dim(O). 

3. INVERTIBILITY 

The criteria for invertibility are important and they can 
be summarized in two points, 

l The mapping from y to w has to be one-to-one 
and onto. Hence, the number of noise inputs to 
the model has to be the same as the number of 
measured output signals. 

l The mappings have to be differentiable. 

In our case, with the model written as in (l), the cri- 
teria for invertibility stated in, e.g., [5] can be used. If 
the system is linearized at a point 20 then the system 
equation can be written as 

S(t) = Ax(t) + Bw(t) 

y(t) = f%(t) (12) 



where A is the linearization of f(z(t),e) computed as 

(13) 

The system is invertible in the point, 2 = ~0, if 

V* rl Im(B) = 0 (14 

where I/* is the largest subspace of ker(C) satisfying 

AV* c V* + Im(B). (15) 

The above criteria is a local test around the point ~0. 

The test of invertibility can therefore be applied as a 
function which tests the invertibility “on line”. 

4. CONVERGENCE 

We will only briefly mention the main results of [6], 
where the convergence of the ML estimator for an in- 
vertible stochastic model was investigated. According 

to Ljung [7], the identification procedure is based on 
three entities; the data record, the set of models and 
the criterion. 

Ljung lists three conditions on the data where we 
will especially note the condition of exponential forget- 
ting. This condition means that the remote past of 
the process is forgotten at an exponential rate. Hence, 
“good” approximations of y(t) can be made that are 
independent of the past. 

The inverted model is similar to the probabilistic 

model defined by Ljung [7] (p. 185), although, here, 

w(t) is computed by the inversed model instead of a 
prediction model. According to Ljung, the model has 
to be restricted in two ways. First, the rate at which the 

inverse transformation W may increase with y has to 
be restricted. Also, the model and its derivatives with 
respect to 19 have to be exponentially stable. It should 
be noted that these conditions concern the model, not 
the’ data, and it is our model. 

It is shown in [6] that the ML estimator will con- 

verge to a parameter set where the likelihood function 
is maximal. Also, for the special case when the model 

set contains the “true model” the estimator will con- 
verge to a set containing the true model. 

5. ANALYSIS OF SINGLE EVOKED 
POTENTIALS 

We suggest a model based method for analyzing sin- 

gle FVEP. First, the model parameters are estimated 
on both pre- and poststimulus data, including the pa- 
rameters describing the properties of the PLIC. There- 
after, the model is simulated both with and without 

Figure 3: Schematic for the estimation of a single 
F VEP. 

the PLIC and the resulting outputs are compared. In 
Figure 3, a block diagram is shown where the measured 
signal, y(t), is used to estimate the parameters of the 
inversed model , l@, and the PLIC, P(t). Thereafter, 
P(t) is subtracted from the noise sequence and the es- 
timated model 10 is simulated using the ‘new’ noise 

sequence. The single FVEP is computed as the differ- 
ence between the two signals. Here, we assume that the 
ongoing activity is unaffected by the evoked potential 
(EP). This assumption combined with the assumption 
that the EP remains the same from trial to trial are 
used by traditional methods. Methods, analysing EPs, 

based on averaging a large number of trials. Although, 
our assumption is somewhat contradicted by the use 
of a nonlinear model, it will make comparisons with 
traditional methods possible. 

6. IDENTIFICATION RESULTS 

The identification algorithm is tested on sequences of 
two seconds of simulated data. The sampling frequency 

is 500 Hz, hence, there is 1000 samples in each se- 
quence. The parameter vector used for the simulation 

will be denoted 00 and the estimated vector 8. Both a 
SISO model and a MIMO model are tested. The latter 
also under generation of flash visual evoked potentials 
(FVEPs). In the case of FVEP the amplitude of the 
pulse-like component, is estimated. 

We will start by showing the detailed results of 
the identification procedure for a SISO model. Since 
the procedure is similar for the more complex MIMO 
model, only the main parts of the results will be pre- 
sent.ed. Finally, t.he results from the estimation of t,he 
FVEP amplitude will be shown along with the usage 
of the analysis scheme suggested in Section 5. 

The risk level, described in Section 2, is set to 5%. 
Hence, if 7 is larger than 95 % the model will be re- 

jected. 

A SISO case 

As pointed out in Section 2, a ‘root’ model has to be 
specified by the user to begin with. The root model 



Figure 4: Validation for the SISO model. The solid line 
corresponds to 80 and the dashed line to 0. 

in our case only consisted of the noise model and the 
first filter h,(t). To begin with, three parameters were 
freed, the parameters representing the mean and the 
variance of the noise and the parameter A, charac- 
terizing the gain of h,(t), see (3). The results from 
the parameter estimation is shown in Ta.ble 1 as trial 
1. All the C parameters were kept equal to zero and 

the resulting negative logarithm of the likelihood, Q, 
is -2028. It should be noted that the value of Q is 
only valid for comparisons made on the same data se- 
quence. To expand the model structure the inhibitory 

feedback branch was tested. Three more parameters 
were freed; C’s, Cd, and 00 (included in the sigmoid 
function). Actually, there is another parameter, repre- 
senting the gain of hi(t), but it is included Cd. When 
freeing the three parameters the value of Q decreased 
by 223 which is a significant reduction. Further ex- 
pansion of the model structure involved the excitatory 
feedback parameterized by Ci and Cz. As shown in 
Table 1, trial 3, the Q value dropped by 9 to -2260. 
Finally, the hypothesis of the direct feedback branch 

parameterized by C’s was tested and found significant 
since the loss reduction was 81. The parameter vector 

used for simulating data is presented as 00 in Table 1. 

Four sequences of data, simulated with 6’0 but with 

different noise realizations, were used to test the pa- 
rameter variation. The parameter estimates of ve, A, 
and 0 were close to their actual values. However, the 
values of the connectivity parameters Ci and the mean 
of the noise, m, varied depending on the initialization. 
Different combinations of Ci and m gave almost the 
same value of Q. To validate these results, the model 
was simulated with another noise sequence using 80 and 
8. -4n example of a simulation for validation using 8 
from trial 4 in Table 1 is shown in Figure 4. This is a 
test that can only be made on simulated data, however, 
it suggests that the parameterization is non unique. 

A MIMO case 

The MIMO model consists of two SISO models, coupled 
by two excitatory branches as shown in Figure 2. The 

Table 1: An example of the parameter estimates and 
the model expansion in a SISO case. 

Table 2: An example of the parameter estimates for a 
MIMO case. 

v01 A1 ml 01 KI 

t?g 6.0 3.6 220 58 300 

1 8s~ 5.3 2.2 341 67 412 1 
CZl c22 c23 c24 C26 

es2 108 86 27 27 0 

1 d,, 134 93 31 38 0 1 

connectivity parameters K1 and K2 determines the de- 
gree of coupling. As long as K1 and Kz are kept equal 
to zero, the model can be considered as two separate 
SISO models. 

An example of the estimation results are shown in 
Table 2. As shown, the parameter values differed con- 
siderably from their actual values in this case. How- 
ever, in Figure 5, the results from a simulation using a 
new input realization is shown, and the result is con- 
sidered to be satisfying. 

Four different realizations were tested and the re- 
sults were compared. The estimated values of the C 
parameters and m varied, and differed from their ac- 
tual values. On the other hand, the simulations with 

a new input realizations gave satisfying results. We 
therefore conclude that there is a non unique parame- 

terization of the model. 



Figure 5: Validation for the MIMO model. The solid 
line corresponds to 80 and the dashed line to 0. 
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Figure 6: Estimated single FVEP. Top: the signal in- 
cluding the FVEP. Middle: FVEP excluded. Bottom: 
The difference between the top and the middle. 

FVEP 

The MIMO system estimated in the previous section 

was also stimulated by a PLIC, described in Section 1. 
The amplitude of the pulse, q = 0.1, was estimated and 
the scheme for est.imating the single flash visual evoked 
potential (FVEP) was used. The amplitude parameter 
was freed last. and the whole data sequence of data was 

used. In other words, both pre- and poststimulus data 
was used. The parameter estimates varied between 0.08 
and 0.13, and was found significant in all cases. 

In Figure 6, the results are shown from the estima- 

tion of a single FVEP. On top, is the simulated signal 
including the FVEP. Next is the simulated signal ex- 
cluding the FVEP. At the bottom the difference and, 
hence, the suggested single FVEP is shown. 

Summary 

The correct model structure was estimated in all the 
tested cases. However, the estimated parameter val- 
ues varied. Since t.he model shows different behavior 
for different parameter vectors it is hard to generalize 
the results to include all parameter combinations. The 
results should, therefore, be seen as examples. 

In all the presented cases, the initial conditions (IC) 
have been treated as known. There are, however, other 
ways of treating the ICs. One way is to estimate them, 
hence add the ICs to the parameter vector. The dis- 
advantage of doing that would be that the number of 
parameters to be estimated would almost double. An- 
other way would be to use the property of exponential 
forgetting (see Section 4), by this assumption the first 
samples of the inverted signal should not be included 
in the computation of the likelihood function. 

‘7. CONCLUSIONS 

An identification procedure for nonlinear stochastic 
models, based on a priori information, is presented. 
The main idea behind the algorithm is to use an in- 

verted model and an ML estimation method of the pa- 

rameters. A case-study is performed on a nonlinear 
EEG generating model. The proposed method is only 
tested on simulated data so far. However, the results 
show that the method can be used for the validation of 
the ideas behind the models. Thus, the method may 
provide a tool for improved analysis of EEG. 
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