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ABSTRACT 

In this paper the mapping of a nonlinear parame- 
ter estimator onto a DSP-architecture under use of 
an Electronic Design Automation (EDA) tool is pre- 
sented. The work concentrates on the implementa- 
tion of static nonlinear process models with SISO- 
structure and block processing. It is shown that the 
synthesized processor is able to perform such a pa- 
rameter estimation in less than 30 ps at a reason- 
able chip size. 

1. INTRODUCTION 

In control engineering the monitoring of technical 
processes by parameter estimation methods has been 
recommended 111, 121. It can increase the precision, 
resolution and the stability from a statistical point 
of view, allows the observation of process quantities 
which are not directly measurable and small faults 
of the process operation can be detected at early 
stages. 

One problem is the high computational power re- 
quired by this method. In order to monitor a com- 
plex technical system, for example a power plant, 
the signals measured at each subprocess should be 
processed separately. One possibility is the usage 
of industrial PC’s or DSP-Boards but they are rela- 
tively expensive and heavy to protect against envi- 
ronmental influences. 

In this paper the design, simulation and appli- 
cation of a Parameter Estimation Processor (PEP) 
is presented. The on-chip combination of this Func- 
tion and Application Specific Integrated Circuit (FA- 
SIC) together with a sensor creates a microsystem 
which can be located close to the process and com- 
press the information obtained by the measured sig- 
nals. 

The algorithm is written in Data Flow Language 

(DFL), a Mentor Graphics version of Silage language 
from UC Berkeley. 

2. ON-LINE PARAME TER ESTIMATION 

Fig. 1 shows the underlying scheme for paramet- 
ric system identification by output error correction 
with initial point adjustment. 
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Figure 1: On-line parameter estimation with initial 
point adjustment 

The input variables xN = (z(l), z(2), .., x(N)) in 
RN and output variables pN = (y(l), y(2), .., y(N)) in 
sN of the process are measured simultaneously at 
equidistant sampling intervals and stored to block 
size N in the vectors x and y during a process op- 
eration cycle, for example when a valve is closed. 
Every previous measured block is deleted or forgot- 
ten. The parameters are viewed as quasi constant 
or time invariant during block measurement. 

2.1. Model and Criterion Function Calculation 

The process is described by the static nonlinear func- 
tion f between the arguments x and the results y by 



or 

using parameters B along one dimension and also to contract along all 
dimensions and so to reach the minimum. 

f:XxO+Y, f=f(x,@ 
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(1) Together with a moving parameter trend anal- 

ysis which is used to predict the next minimization 
initial point the number of iterations can be decreased 
strongly compared to an unknown initial point. 

(2) 
2.3. Moving Trend Analysis 

The moving trend analysis is based on a second or- 
der polynomial: 

The above mentioned information compression as- 
pect is thereby described by the mapping of the mea- 
surement space into the parameter space. 

It is assumed that the model is physical-based 
and includes the fault cases, thereby the faults have 
unique features, i.e. the characteristic curves are 
independent of each other. The model is already ver- 
ified by real measurements and the fault cases can 
be related to one parameter or a tuple of parame- 
ters, i.e. the model is sensitive in these parameters. 

where &, is constant at the k-th parameter estima- 
tion. This function should be sufficient for the de- 
scription of the assumed slow parameter drift. 

At this stage a quadratic criterion function is cal- 
culated. A more robust function w.r.t. the measure- 
ment disturbances like a Huber function 131 could 
be implemented but has not been necessary for the 
investigated examples. In this content it is assumed 
that the minimization reaches only the (desired) min- 
imum which is located together with the initializa- 
tion point in the same basin of attraction. 

The LS-estimation of the linear parameters Ki 
and KZ is done by generalized correlation functions 
as described in [8]. The next initial point is pre- 
dicted by an extrapolation of the polynomial. The 
implemented trend analysis uses the parameters from 
the last six estimations. 

2.4. Parameter Estimation viewed as Discrete 
Time System 

This assumption requires the initialization of the 
first parameter estimation at a known process oper- 
ation case, usually the normal operation case. The 
parameter estimation scheme will hold for such “slow” 
parameter changes that the model still fits the ob- 
servations at reasonable criterion function values. 

In order to use the automatic scheduling capabili- 
ties of the EDA-tool (see section 4) the parameter 
estimation scheme had been rewritten as discrete 
time system (Fig. 2). Here B is the parameter vec- 

2.2. Multidimensional Minimization Algorithm 

8 (k+l) = f(e (k)), k=0,1,2 I... 
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Iterative numerical minimization algorithms can be 
divided into groups depending on the usage of the 
function value, its gradient and its Hessian 141. 
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A comparison of the implementation of the sim- 

plex method and the Gradient and Hessian calculat- 
ing Sequential Quadratic Programming (SQP) algo- 
rithm showed that the simplex method is suitable 
for the implementation in an microsystem for the 
intended usage. The main reason is the 7 times 
smaller chip size 151. 

Figure 2: Discrete time system 

tar, k the discrete time variable and Q a map of the 
parameter space into itself. 

The simplex algorithm requires only M + 1 func- Globally spoken one can think on a direction up- 
tion evaluations in M parameter dimensions which date at one iteration step depending on the criterion 
form a geometric figure in the parameter space 161 function value. The result of the behavioural simu- 
and is known as slow but robust 171. The simplex lation of the parameters generated by this system is 
is able to reflect, to reflect and expand, to contract shown in Fig. 7. 



3. EXAMPLE PROCESSES 

The characteristic function of a process which can 
be described by static nonlinear model is shown in 
Pig. 3. Here the potential and the electrical current 
of a microplating process are measured and among 
others the concentration of the electrolyte is esti- 
mated 191. 
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Figure 3: Microplating process with 5 parameters 

A second example is the monitoring of a Motor- 
Operated Valve (MOW using the relation between 
the stem position and the operator torque 1101. The 
characteristic curve shown in Pig. 4 is represented 
by a constant normal operation vector influenced 
among others by a function representing several on- 
going faults, for example a high stem friction due to 
a poor lubrication. The model is still under investi- 
gation. 
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Figure 4: Model-based diagnosis of a motor- 
operated valve with 6 parameters 

The microsystem including the PEP is intended 
to be fixed very close to a process and so to concen- 
trate computational power locally. 

4. DSP ARCHITECTURE 

The presented PEP is designed as core. To complete 
the microsystem at least a sensor and an A/D con- 
verter have to be added (Pig. 5). The reliability of 
the data transfer should be increased by a field bus 
interface, for example the CAN-bus interface. 

Parameter to Host 
Analog /Digital - Estimation --c CAN-Bus --c 

Converter Processor 
Controller 

Figure 5: Microsystem parts 

Design data for the A/D-converter and the CAN- 
bus controller are available when a single chip mi- 
crosystem is desired as well as chips for each unit so 
that only the architecture of the PEP is explained. 

The implementation of the parameter estimation 
scheme has been done under use of the MISTRAL2 
synthesis tool by Mentor Graphics which is suited 
for third-generation DSP-algorithms. These DSPs 
are designed for the application of complex decision 
making algorithms to large blocks of sampled data. 

The size and speed estimation for the bitparallel 
PEP were performed at logic level by MISTRAL2 
whereas the scheme was defined at the algorithmic 
level. At the register transfer level a description 
of the processor architecture in terms of execution 
units (EXUs) and interconnections is available as 
well as the description of the processor controller. 
At present the EXUs shown in Pig. 6 are used. 

Thereby the sampled data are read from the In- 
put RAM (ipb-1) and processed by the Arithmetic 
Logic Unit (alu-1) and the Multiplier (mult-1). To 
the background RAM (ram-l) belong data input reg- 
ister files, address input register files and other reg- 
isters. The foreground ROM (romctrl-1) is used for 
constant signals with compile-time constant address. 
Address computation and loop counting are performed 
by the Address Computation Unit (acu-1). Finally 
the output signals are stored in the Output RAM 
(opb-1). The controller of the processor is microcode- 
based and of multi-branch type. 
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Figure 6: EXUs of the PEP 

5. BEHAVIOUBAL SIMULATION AND 
IMPLEMENTATION RESULTS 

In Fig. 7 the results of a behavioural simulation 
of three parameters during an estimation are de- 
picted. Since the geometric vertices of the first sim- 
plex are calculated serially one can observe the ini- 
tial simplex during the first three steps. The initial- 
ization is followed by a reflection and then a con- 
traction. Close to the minimum the simplex con- 
tracts further so that the parameter “signal ampli- 
tude” decreases. When the termination tolerance is 
matched the estimation stops. 

In Fig. 8 the results of a timing analysis are pre- 
sented. After the trend analysis the simplex mod- 
ule is activated delivering a parameter tuple which 
serves as input for the model and criterion func- 
tion calculation. After M+l iteration steps the first 
simplex is calculated and evaluated by the simplex 
module and the next iteration cycle starts. 

For the simulation of a trend analysis of a pa- 
rameter drift shown in Fig. 9 the parameters of the 
last six estimations are used. 

Assuming 40 iteration cycles the total parameter 
estimation time amounts to 26.2 ps for the example 
process shown in Fig. 4. 

The area of the PEP containing the simplex al- 
gorithm was determined to 87000 gate equivalents. 
That can be called “normal” for a DSP and can cer- 
tainly further improved by accuracy investigations 
and architectural optimizations. 
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Figure 7: Parameter “signals” 
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Figure 8: Timing analysis of the simplex-PEP 
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Figure 9: Trend analysis by second order polyno- 
mial 

Figure 10: Layout of the simplex-PEP 

6. CONCLUSION 

The practical investigations presented in this pa- 
per show that it is possible to design a DSP suit- 
able for nonlinear parameter estimation at reason- 
able costs (chip size). The implementation of a usu- 
ally as slow known gradient free method combined 
with a parameter trend analysis to predict the next 
initial point allows the repetition of the parameter 
estimation approximately every 30~s for the given 
example, i.e. the process parameters might change 
within this dynamic. 
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