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ABSTRACT 

Two alternative neural-network methods are presented 
which both extract independent source signals one-by- 

one from a linear mixture of sources when the num- 
ber of mixed signals is equal to or larger than the 
number of sources. Both methods exploit the previ- 
ously extracted source signals as a priori knowledge so 
as to prevent the same signals from being extracted 
several times. One method employs a deflation tech- 

nique which eliminates from the mixture the already 
extracted signals and another uses a hierarchical neu- 
ral network which avoids duplicate extraction of source 
signals by inhibitory synapses between units. Exten- 

sive computer simulations confirm the validity and high 
performance of our methods. 

1. INTRODUCTION 

Blind source separation can be formulated as the task 
to recover the unknown sources from the sensor signals 

described by x(f) = As(t), where x(t) is an n x 1 
sensor vector, s(t) is an m x 1 unknown source vector 
having independent and zero-mean signals, and A is an 
n ‘x m unknown full-rank mixing matrix. 

By assuming that the number of sources is known 

and usually equal to the number of sensors, most of the 
algorithms in the literature can efficiently perform sep- 
aration of the source signals in a fully parallel manner 

[2-5,8,10,13,15]. In p ractise, the number of sources is 
unknown and can change rapidly in time, and is usu- 
ally smaller than the number of sensors, i.e., m 5 n [7]. 
One possible solution for practical cases is to extract 
source signals sequentially (one-by-one) [6,9-12,18,19]. 
This solution requires use of two techniques: one for 
extracting a single source signal form the mixture and 
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another for preventing duplicate extraction of the same 

sources by next processing units. 

To extract a siugle source signal, methods for blind 
equalization or deconvolution problems [17] can be used, 
as done in [6,9,11,12,14,18,19]. Namely, extraction of 
an independent source signal can be achieved by maxi- 
mizing (and/or minimizing) the fourth order cumulants 
I subject to certain constraints. To prevent du- 

plicate extraction, an adaption of the orthogonal Schur 
eigenvalue deflation technique was used in [9]. This 
technique is, however, not suited for on-line, real-time 
applications due to its rather high complexity. In [ll], 
the hierarchical orthogonalization technique [16] was 

used. However, it is rather difficult to choose proper 
values for the coefficients corresponding to the orthog- 
onalizing feedback terms, unless a priori knowledge of 
the kurtosis of sources signals is known. 

In this paper, we present two alternative neural- 
network methods for extracting source signals on-line 
when m 5 n. One method (in Section 2) employs a de- 
flation technique for eliminating from the mixture the 
already extracted signals while another method (in Sec- 
tion 3) uses a hierarchical neural network which avoids 
duplicate extraction of the source signals by inhibitory 
synapses between units. One salient feature of these 
methods is that they can extract first the most “in- 
teresting” signals, those most deviated from Gaussian 

signals. In addition, the learning adaptive algorithms 
in use are purely local, biological plausible and often 
simpler than algorithms for blind signal separation. 

2. ON-LINE EXTRACTION AND 
DEFLATION LEARNING ALGORITHMS 

Let us consider a single processing unit (see Fig. 1.a) 

~1 = w’fxl = Cy=, Wljxlj, where ~1 = [XII, 212,. . . , 

QJ T is either the mixing signals x = As or the pre- 
whitened version of x. Prewhitening or decorrelation 



to a simple learning rule: 

dwl -= 
dt 

-Pl(t)fl(Yl(t))xl(t), 

(b) 

Figure 1: The architectures of the extraction-deflation 

neural network (a) and the hierarchical neural network 

(b). 

of x so that Rx,x, = I [1,19] improves the recovering 

performance for the cases where mixing matrixes A 
are ill-conditioned or where additive noises exist at the 
sensors. The unit successfully extracts a source signal 
if WI(t) = wl* satisfy the relation w: A = ek, where 
ok denotes the k-th column of the n x n identity matrix 

I. 

A possible loss (contrast) function can be formu- 

lated as [18]: 

1 
Jl(W1) = --I~4(Yl)lr 

4 (1) 

where n4(yr) is normalized kurtosis defined as n4(yr) = 

- 3. Minimization of the loss function (1) leads 

or 

w1(t + 1) = w1(t) - Pl(~)fl(Yl(t))xl(t), 

where pi(t) > 0 is a learning rate and f(yr(t)) = 

Sig+4(Yl(t))] [Y&J - #YWl $g$ with 

mp(t) dgf E[lyl(t)lP], p = 2, 4. The high order mo- 
ments m2,m4 and the sign of kurtosis ~4 can be est,i- 
mated on-line using the following averaging formula: 

F = P[-mp(Yk(t)) + IYk(t)lP]. (3) 

After successful extraction of the first source signal 

yl(t) - sj(t) (j E { 1,. . . , n}) ! we can apply a deflation 
procedure which removes previously extracted signals 

from the mixture. This means that we are looking for 
such an on-line linear transformation given by (see Fig. 
1.a) 

Xk+l(t) = “k(t) - Gk(t)Yk(t) k= 1,2,... (4) 

which ensures minimization of the generalized energy 
(loss) function 

Jk(Gk) = ; IIxk+l iI2 , (5) 

where yk = w;xk, 

dwk - = 
dt -pk(t)fk(Yk(t))Xk(t), (6) 

and fk(Yk(t)) = +&4(Yk(t))] [a(t)-MY:(t)] 

m4 (Y&)) 

mjo). 
The last term rnd/rng can be absorbed by 

learning rate pk(t) since it is always positive. Mini- 
mization of the above defined loss function leads to a 
simple learning rule: 

diij, 
- = ck(t)Yk(t)Xk+l(t) 

dt 
k= 1,2,.... (7) 

The procedure can be continued until all of the esti- 

mated source signals are recovered, i.e., until the am- 
plitude of each signal Xk+l,i is below a given threshold. 
This means that it is not necessary to know the number 
of source signals in advance. 



3. HIERARCHICAL NEURAL NETWORK 

Another method different from the deflation procedure 
described above is to use a hierarchical neural network 

as shown in Fig. 1.b. The neural model is described 

by a simple set of equations: 

Yk = ~~=, Wkj(t)llj + c(t) trill GkiYi 

= WfXl + c(t)iqy, (8) 

where %k = [- Wk,l, Gk,2r . . . , W”k,k-I,O,...,O]T, Y = 

[ Yl,Y2r..., YnlT9 and c(t) is a scaling factor. As done 

in the previous section, for extraction of a single source 
signal we employ the following loss (cost) function: 

1 
Jk(wk) = --b4(yk)l. 4 

Here, however, to ensure that the extracted signal yk 
is different from the previously extracted signals yj, 

where j < k, we introduce an additional loss function: 

k-l 

?k(Wk,Gk) = ~~(‘+j(t)yk(t)])‘, (10) 

j=l 

where X > 0 is a penalty parameter. This loss function 
contributes non-zero penalties when the outputs of the 

jth and kth units, i.e., yj and yk, are correlated. 

Applying a standard sbochastic gradient descent pro- 

cedure to (9)+(10), we obtain on-line local adaptive 

learning rules: 

dwk 
- = -~k(t)fk(Yk(f))Xl(t) 

dt 

where pk > 0, and 

h&(t)) = ++4(yk(t))] [?/k(t) - ;;;;;i:;; y;(t)] 

k-l 

i-x c rkj (t)Yj (t) 

j=l 

(12) 

with rkj(t) dgf E[Yk(t)Yj(t)]. AS with m,,: the corre- 
lation rkj can be estimated on-line using the following 
averaging formula: 

drkj 
- = P[-rkj + !/k(t)yj(t)]. 

dt 

The role of the lateral synaptic weights Gkj is de- 
voted to preventing the previously extracted signals yj, 
where j < k, from being redundantly extracted. The 

learning rule is, therefore, derived by applying a stan- 
dard gradient descent procedure to (10). The resulting 
learning rule is as follows. 

dGkj 
- = -~k(t)[Tkj(t)yk(t)Yj(~)+crh(iiikj)] 

nit 
(j < k) 

-" 

(14 

where ck and cr > 0, and h(w) is a non-linear odd 

function, such as h(w) = IwlPsign(w),p = 1,3,5,. . . 
The weight decay term [Yh('&kj) plays a role of a for- 
getting term, namely, it forces to zero those weights 
not receiving sufficient reinforcement. 

4. COMPUTER SIMULATIONS 

We confirmed the validity and performance of our meth- 
ods using extensive computer simulations for a variety 
of problems. 

Below, due to limit of space, we only present an 
illustrative example of typical results from the hierar- 
chical neural network method experimented with three 

binary 512x512 images. These results were obtained 
when we initialized all the weights such that, they had 

random values in the range -0.1 and 0.1, used the fixed 
learning rates of 0.001, and started the kth extraction 
unit at time (k - 1)2500. Five linear mixtures of the 
images were generated by multiplying the source signal 
vector with the randomly chosen mixing matrix A = 

l 

-0.9846 -0.8609 0.4024 
-0.2332 0.6923 0.8206 

-0.4557 0.0539 0.4239 . 
-0.1650 -0.8161 -0.8751 
0.6735 0.8078 -0.9051 I 

Fig. 2 shows the original images, the mixed images 

and the extracted images in (a), (b) and (c), respec- 
tively. Visual comparison of Figs. 2.a and 2.c confirms 
that the source signals were successfully extracted, but 
subject to un-determinacy of the order and the sign of 

extracted signals. 
We note here that the number of active sources in 

the mixed signals was not known to the system. In the 

above experiment, at the 4th extraction unit, the corre- 
lation between the outputs of the 2nd and 4th units was 
high, e.g., r42(10000) = -0.8290, and never converged 
to zero. This implied that all of the active sources had 
been successfully extracted by the first three extraction 
units. We could, therefore, terminate the extraction 
process and discard the result at the 4th unit. 

5. CONCLUSIONS 

We have presented two alternative neural-network meth- 
ods for on-line blind signal extraction. Our approach 



has the following features: It uses a simple cost func- 
tion (absolute value of normalized kurtosis) without 
any c0nstraint.s. From t,his cost function, simple adap- 
tive nonlinear functions are derived. These nonlinear 
functions change their shapes during the learning pro 
cess. Moreover, the proposed algorithms are able to 
extract signals both sub-Gaussian and super-Gaussian. 

The developed learning algorithms are purely local and 
are biologically plausible; they could be considered as 
a generalization or extension of Hebbian/anti-Hebbian 
rules. The proposed methodology can be extended to 
multi-channel blind signal deconvolution or generalized 
to complex-valued signals, 
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(a) Original Images (b) Mixed Images (c) Extracted Images 

Figure 2: Typical results of extraction of three binary 512x512 images received at five sensors. 


