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ABSTRACT 

Three dimensional optical microscopy images are 
noisy and blurred, have nonuniform background, and 
contain objects which do not usually have sharp 
edges or may have noise induced boundaries. As a 
result, traditional segmentation techniques are not 
suitable for this type of applications. We present a 
novel methodology based on a combination of 3D 
nonlinear restoration and morphological sieving which 
can be used to successfully segment 3D optical 
microscopy images. The nonlinear restoration removes 
the blur and noise aberrations from such real images 
and the sieve algorithm segments out their subcellular 
features. The methodology is discussed and 
experimental results using both synthetic and real 3D 
images are presented. 

There is little work in the literature on automatic 
segmentation of optical microscopy images. The need 
for efficient and reliable methods to automatically 
recognise 3D objects in such vast image data sets, 
followed by features extraction, is overdue. 
Traditional segmentation techniques such as edge 
detection, thresholding, amplitude projection, split 
and merge, etc. [16] would not be able to deal with 
such real 3D images; the background is not uniform, 
nuclei may have different average luminance and their 
edges may not be sharp, and false noise-induced edges 
may be present. As a result, for example by using edge 
detection/thresholding techniques, typically many 
features present in an observed image may be lost in 
the resulting segmented image. We present a novel 
combination of nonlinear image restoration [3,4,7] and 
the Sieve algorithm [lO,ll] for segmenting such 
images. The nonlinear restoration first removes 
intelligently the noise and blur from the image, and the 
Sieve algorithm then segments out subcellular features 
in the restored image. 

1. INTRODUCTION 

2. 3D SEGMENTATION METHODOLOGY 
Three dimensional (3D) imaging systems are 
becoming more widespread. Confocal laser scanning 
microscopes are used, for example, in a variety of 
biological and biomedical applications. We use 
confocal imaging, in collaboration with other research 
institutes, to study various cellular structures and 
processes in plants. Particular components within cells, 
for instance specific genes or proteins, are labelled by 
florescent probes. Focal sectioning is then applied to 
generate three dimensional images of the sub-cellular 
structures. Vast amount of image data is thus 
generated; typically between 60 to 90 optical sections 
of 512x512 pixels each. These images are subject to a 
number of distortions. In particular they are noisy, and 
invariably blurred by the point spread function (PSF) 
of the imaging system. The PSF can be experimentally 
determined, and then modelled [5]. 

The restoration of 3D optical microscopy images by 
traditional linear techniques [ 161 produces poor 
quality images that are often marred by artefacts such 
as oscillations or ‘ringing’ around sharp changes in 
intensity in the image, negative pixel values, etc [3]. 
This is because the restoration process is a difficult ill- 
posed mathematical problem with many feasible 
solutions and hence it has to be regularised by 
incorporating in the problem formulation a priori 
knowledge in the form of constraints for restricting the 
set of admissible solutions [1,2]. We have developed 
new nonlinear restoration methods using constrained 
iterative deconvolution and projection onto convex sets 
(POCS) methods [3, 4, 5, 6, 71 which overcome these 



difficulties and produce significantly enhanced images 
in terms of signal to noise ratio and resolution. 

A consequence of image restoration is that “granular” 
noise may become more visible, mainly in the 
background, and the intensity changes steeper at 
feature boundaries within a confocal image. It is 
appropriate to segment images with these 
characteristics using methods based on mathematical 
morphology. 

It is common for biological structures to have 
characteristic volumes but very variable shapes. For 
example, liver and pancreas have variable shape but 
more constant relative volume (weight), and volume 
has long been used to characterise red blood cells. 
Similarly subcellular organelles are often 
distinguishable by volume rather than shape. 

We have used a multidimensional Sieve algorithm 
[ 10, 11, 141 to segment restored images, and remove 
small-scale noise granules. The connected sieves used 
do not introduce new features in the restored image 
and are capable of discriminating effectively 
between objects of different volumes, for example 
irregular shaped subcellular organelles, in a particular 
range of volumes, are clearly distinguished without 
distorting their shape. 

2.1 3D Nonlinear Restoration 

Two nonlinear algorithms were developed for 
restoration of 3D optical microscopy images [3,7] 
These are the constrained iterative deconvolution 
algorithm (IDA) and the POCS method. Both methods 
incorporate constraints in order to regularise the ill- 
conditioned restoration problems. The details of IDA 
are described in [3], and we briefly discuss here the 
POCS method. 

In the POCS approach [7], each constraint forms a 
closed convex set onto which a solution is projected. 
The overall solution lies in the intersection of these 
sets. For n constraints, there are n sets and the solution 
ought to lie in the intersection 

i = 1,2,3 ,......, n 
i=l 

A solution in <, will satisfy all the constraints, and is 
unique if &, contains a single point. On the other hand if 
& is empty, there does not exist any solution; which 
may correspond to wrong constraints or noisy image 
data. Assuming P,and P, to be the orthogonal projection 
operators of g onto 5: and <, , and Ti 

q = l+pi(q -1) 

where {pi) are relaxation parameters, O< pi ~2. g is a 
fixed point of PO and Pi, and hence of T, and of the 
composite operator, T = T,T “.,... T, , then the POCS 
algorithm is given by g,+,= Tg, . The sequence [g,} 
converges weakly to a fixed point of <,, provided the 

latter is a nonempty set. g,, is an arbitrary initial guess. 
If the relaxation parameter p,=1 , then this equation 
reduces to 

gk+l = ‘gk , 

where P=P,P,.,...P,. The constraints are: the source is 
positive, an upper bound on the noise variance, band- 
limitedness and energy boundedness. 

2.2 The Sieve 

This is a morphological transform which preserves 
scale-space and can operate in multiple dimensions 
[IO-141. The Sieve functions by removing extrema of 
successively increasing size. Sieves can be considered 
as a special class of alternating sequential filters 
operating on connected sets [8, 91, and are particularly 
effective at rejecting impulsive granular noise. Very 
sharp edged objects are handled well by sieves, but 
smoothly changing objects are less well handled 
because they spread over many scales in the 
granularity domain. This is the converse of the case 
with linear filters that spread edges over many scales 
or frequencies. 

A connected set sieve in N dimensions O,:ZN+ZN 
operates on graphs [15]. An image can be described by 
a connected graph, H=(V,E) where V is the set of 
vertices and E the set of edges. Let C,(H) denote the 

set of connected subsets, when N=2 these represent 
areas and when N=3, volumes. 

am(X) = $(O,,+, (X)), where (Pe( X) = X 

The operator @,” may be an open/close (M-sieve) 
max(min(min(max(C,(H))))) or area close/open(N- 
sieve) min(max(max(min(CdH)))) or a recursive 
equivalent, each operating on graphs with a set of 
connected subsets with m elements. It is emphasised 
that 4, operates on connected sets without regard to 
shape and there is no structuring element. The 
differences between successive images in the 
decomposition are the granule functions 

GrunR(X)(m)=(R,(X))-(R,+,(X)) 

The set of granules {G) represent the non-zero 
intervals in the granule functions characterised by the 
triplet {width, amplitude and position} and the sieve 
transform maps the signal into a set of granules. 
Objects that have volumes lying in the range, ml to 

m2, are preserved by adding together the granule 
functions in that range and the process rejects objects 
of larger and smaller volume. 



2. RESULTS 

Images of pea root cells that have been labelled with a 
fluorescent probe are observed with a scanning 
confocal microscope. The label allows the nucleolus 
and associated structures to be seen. The PSF for the 
entire system is obtained by imaging a subresolution 
fluorescent bead and fitting a bicubic spline to the 
experimental data set [S]. This modelled PSF is then 
used to restore the 3D image data sets of the root cells 
to yield an estimate of the source function. Once the 
image is restored , it is then Sieved to identify its 
subcellular features. 

We present here typical experimental results for both 
synthetic and real images. The first example (see 
Figures 1 and 2) is a 3D synthetic image which has 
been blurred and then Gaussian noise added to it. 
Figure 1 shows a single section of the 3D synthetic 
image which has been restored and then segmented by 
the Sieve. Figures 2a is the blurred and noisy original 
3D image after being rendered by the Iris Explorer 
visualisation tools. Figures 2b and 2c show the 
corresponding restored and segmented images in 3D, 
respectively. Notice that very small-scale noise 
granules are generated mainly in the background 
region of the image. As can be seen our methodology 
based on nonlinear restoration and sieving has 

effectively recognised all the different 3D objects in 
the image , despite their varying size and shape. 

The second example is the 3D image of a pea root 
nucleolus obtained from the confocal microscope 
operated at the limits of the resolution by near ultra- 
violet light (see Figures 3 and 4). Figure 3a shows a 
single 2D image slice ( out of 60 slices altogether) 
which is blurred as result of the optical PSF, and is 
also noisy. Figures 3b and 3c show respectively the 
restored and sieved versions of the single image slice 
in Figure 3a. 

Figure 4a shows the entire observed image data after 
volume rendering by the Iris Explorer. The blurred 
edges of the fluorescently labelled objects and the 
background large scale intensity changes make it 
difficult to select a satisfactory threshold above which 
the Explorer will render objects as solids. Figures 4b 
show the same data in Figure 4a after 3D nonlinear 
restoration. The image has clearly been sharpened but 
now the features of interest need to be separated from 
both the background and very small-scale granular 
noise. The application of a 3D sieve tuned to 
distinguish the range of volumes of interest makes it 
easier to interpret the image (see Figure 4~). 

Figures 5 and 6 show the results of applying our 
segmentation methodology to another confocal image 
data set. All the observations made previously for 
Figures 3 and 4 are also applicable here. 

Figure 1. Restoration and segmentation of a single 2D slice from a 3D blurred and noisy synthetic image. 
Picture a- A single slice from the original image set, Picture b- Image in (a) after nonlinear , and Picture c- Image in 
(b) after segmentation by the sieve. 

Figure 2. 3D Restoration and segmentation of a blurred and noisy synthetic image. Picture a- the blurred and 
noisy original image data after being rendering by Iris Explorer, Picture b- the original image in (a) after nonlinear 
restoration, and Picture c- image in (b) after segmentation by Sieve. 



Figure 3. Restoration and segmentation of a single 2D slice from an original 3D confocal image data set of 60 
x128x128 voxels. Picture a - A single image slice of 128x128 pixels, Picture b - image (a) after nonlinear restoration, 
and Picture c- image (b) after segmentation by the Sieve. The image is of a pea root nucleolus labelled with a probe 
to the ribosomal RNA genes. 

Figure 4. 3D Restoration and segmentation of a real optical microscopy image of a pea root nucleolus. Picture 
a- the blurred and noisy original image data after being rendering by Iris Explorer, Picture b- the original image in (a) 
after nonlinear restoration, and Picture c- image in (b) after segmentation by the Sieve. 

Figure 5. Restoration and segmentation of a single 2D slice from an original confocal image data set of 60 
x128x128 voxels. Picture a - A single image slice of 128x128 pixels, Picture b - image (a) after nonlinear restoration, 
and Picture c- image (b) after segmentation by the Sieve. The image is of a pea nucleolus fluorescently labelled with 
antibody to the nucleolar protein fibrillarin. 



Figure 6. 3D Restoration and segmentation of a real optical microscopy image of a pea root nucleolus. Picture 
a- the blurred and noisy original image data after being rendered by Iris Explorer, Picture b- the original image in (a) 
after nonlinear restoration, and Picture c- Image in (b) after segmentation by the Sieve. 

3. CONCLUSION 

This paper has explored the synergism between 
sharpening 3D optical microscopy images by 
restoration and sieving. We presented a new 

methodology which combines nonlinear restoration 
and sieves to effectively segment volume objects 
within 3D optical microscopy images. For this 
combination to work, it is important that the images 
are first deblurred as we found that sieves can handle 
sharp edged objects very effectively. Smoothly 
changing objects, on the other hand, are not handled 
well by sieves because they spread over many scales in 
the granularity domain. The new methodology was 
applied to synthetic and real 3D confocal images, and 
was shown to perform effectively in producing good 
segmentation results. 
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