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ABSTRACT 

This paper presents a method for off-line segmen- 
tation and AR modeling of signals characterized by 

abrupt changes between stationary segments (quasista- 
tionary signals). Assuming that the number of models 
and their orders are known, we propose a suboptimal 
procedure for maximizing the likelihood function based 
on the Expectation-Maximization algorithm. At each 
iteration the transitions are estimated as the posterior 

probabilities that a sample was generated by a given 
mode1 (E-step); then, the new set of models is obtained 
by solving a least squares problem (M-step). It is shown 
by means of computer simulations that the algorithm 
achieves accurate estimates of the transitions and AR 

coefficients with a moderate computational complexity. 

1. INTRODUCTION 

Autoregressive (AR) modeling is a well-known tech- 
nique for stationary signal analysis which has found 
application in areas such as speech coding and spectral 

estimation. Signals encountered in practice, however, 
are usually non stationary; a frequent class of them, 
referred to as quasistationary or locally stationary [l], 
is characterized by abrupt changes between station- 
ary segments with different statistical properties. In 
these situations, the performance obtained by a single 

(global) AR model can be improved by using a different 
(local) AR model for each stationary segment. 

A complete solution to this problem consists of find- 

ing the correct number of models (or stationary seg- 
ments), their orders and parameters, and the transi- 
tions among them. A Bayesian solution has been pro- 
posed in [2], where the a posietioti probability distribu- 
tion is maximized via dynamic programming; however, 
this approach has a very high computational cost. An 
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alternative solution has been given in [3,4], where it 
is shown that if different linear models compete using 

a “winner takes all” strategy (i.e., each sample is as- 
signed to the mode1 producing the smaller prediction 

error), each mode1 concentrates on a stationary time 
segment of the signal. After competition, the obtained 
models can be used to estimate the boundaries between 
stationary segments. 

In this paper we consider a simpler version of the 
problem, where the number of models and their or- 
ders are known: this represents a typical situation, for 

instance, in speech modeling, where it is interesting to 
evaluate if there is some improvement when a single AR 
model of a given length is substituted by two shorter 
AR models and a segmentation law (keeping fixed the 

total number of parameters). To find a solution in this 
simpler case is still a difficult problem, since it is neces- 
sary to perform a search over a highly multidimensional 
space composed of all the possible transitions and AR 
parameters. 

We propose an off-line maximum likelihood solu- 
tion, which allows the simultaneous segmentation of 

the quasistationary time series and the estimation of 
the optima1 AR models. The maximization of the like- 
lihood function is carried out using the Expectation- 
Maximization (EM) algorithm [5]: at each step, the 
transitions are estimated by computing the conditional 
probabilities that a particular sample was generated by 
a given model; then, a new set of models is obtained 

solving a least squares problem. 

2. PROBLEM STATEMENT 

2.1. Signal model 

We consider that the observations are generated by 
switching among M different AR models of orders pi, . . ., 
PM, and coefficients aj = (al,j, . . . , a,,,,j); i.e., 



x[n] = $yj[n]xj[n] (1) 
j=l 

where tj[n] selects the samples generated by model j 

tj[n] = 

1 

1, if ~[n] is generated by model j 
0, otherwise. 

(2) 
On the other hand, the output at time instant n for 
model j is given by 

Xj [72] = - 2 Qi,jX[n - i] + ej [Tl] 
i=l 

j = l,...,M 

(3) 
where ej [n] is a zero mean uncorrelated Gaussian noise 

with variance CT:. 
Note that (3) is generated using pj past samples 

of the observations: when a transition occurs these 
past values are used as the initial condition for the 
new model after change. This method of generating 
a quasistationary signal results in a smooth transition 
between the observations before and after the change. 
This process is depicted in Fig. 1, where Aj(z) = 

1 + CyI!r Ui,jZ-“. 

Figure 1: Method of generating a quasistationary sig- 
nal. 

Now, the problem can be stated as follows: given 
the number of rnodels MT their orders (pr !. . . ,p~), and 

the vector of observations x = (z[O], . .. ,z[N - l])T, 
first, determine the boundaries between segments; and 
second, find the best model for each segment. 

2.2. Cost function 

Our objective in this section is to find the likelihood 
function for the unknown parameters. For notation 
purposes, let us group the coefficients of the AR mo- 
dels, the variances of the noise sequences and the tran- 

sition sequences in vectors a = (al,. . . , aM) 

(a:, . . . , c&)~ and t = (tl, . . . , tM); respectively. 

d = 

Using model (l), the density function for each sam- 
ple z[n] is given by 

P(+l;t,a,a) = - ~unexp : 
{ ( 

2: -- +I + 5 tj bl 
j=l 

(4) 

where U: = CT:, tj [n]$. 
Assuming iindependence among the stationary seg- 

ments, we have that the log likelihood function for the 
unknown parameters is given by 

M 

X[n]+Ctj[?Z] 

j=l 

2U,,jX[?l-i])2 - y lOgUn. (5) 

i=l 7l=IIlaX(pj) 

Since the evaluation of (4) is only possible for n > 
max(pj), the summation in (5) runs from n = max(pj) 

to N- 1. 

3. PROPOSED SOLUTION 

3.1. Applying the EM algorithm 

A direct maximization of (5) cannot be carried out 
in practice due to the discrete nature of the transi- 
tion sequences t. To overcome this difficulty we apply 
a suboptimal procedure based on the EM algorithm 
[5], which increases the likelihood of the obtained esti- 
mates, iteration by iteration, until a local maximum is 

reached. 
The observed incomplete data is x; the unobserved 

data is the vector of transition sequences t. Using this 
choice for the complete data set (x, t), and denoting the 
current estimates of the parameters after k iterations 

of the EM algorithm as &, & and 6.k; then, the next 
iteration cycle is given by 

Estep : ik+l = E[tlx,~k,~k] (6) 
Mstep : (&+I, &+I) = argmax L (X; ik+l, a, U) 

where E [.I denotes expectation. 



First, let us consider the E-step: tj[n] can be es- 
timated as the conditional (posterior) probability of 

model j given ~[n], i.e., 

ij [n] = P (MOdClj Il7?[72]) . (7) 

In (7) the subscript denoting iteration is under- 
stood. Now, applying Bayes, and assuming equal a 
prioti probabilities for each model, (7) can be rewrit- 

ten as 

ij[n] = P(+lIMoW) 
CL p(44lModeb) ’ 

(8) 

Finally, the probabilities p(x[n]lModeZj) can be ob- 
tained from (4) considering only the prediction error 

for model j 

P(4nlIModelj) = -J& 
ej bl 

exp- - ( ) 2cr; (9) 
3 

In fact, the transition estimates can be viewed as 
soft decision functions similar to those proposed in the 
neural network literature to design modular networks 
[6] or in unsupervised competitive learning algorithms 
[7]: this soft scheme improves the competitive local 

linear procedure proposed in [3], where a hard decision 

technique is used. 
Once the transition sequences have been obtained, 

the M-step consists of estimating the parameters of the 
AR models: coefficients and variances. A standard pro- 

cedure to get the AR coefficients consists of solving the 
following linear least squares problem 

for n = mtiX(J?j);.., N - 1; which can be rewritten in 

matrix notation as 

[TlXl) . . . ITMXM] a = x (11) 

where Xj is a (N - max(pj)) x pj matrix which rows 
are delayed observations vectors (the rth row is (z[r - 
l],... , Z[T - pj]), and Tj are (N - max(pj)) x (N - 
max(pj)) diagonal matrices formed by the transition 
sequences estimated in the E-step. 

From (lo), we can see that to predict ~[n], each 
model contributes in a proportion given by the proba- 

bilities t^j [n]. If over time a sample is better predicted 
by a particular model, its posterior probability is pulled 
towards 1; otherwise it approaches 0. 

Finally, the variances of each model are estimated 
according to 

uj” = L ejz[nltj[nl 
LtjLnl ’ 

The direct procedure proposed in this section has 
the drawback that isolated samples within a station- 

ary segment could be better predicted by a model cor- 
responding to a different segment. To avoid this un- 
desirable effect which causes instantaneous transitions 

among the models, we propose to evaluate (7) using 
not only the sample to be predicted, but a neighbor- 
hood around it. Specifically, considering a window of 
length 21+ 1 centered in z[n]: and assuming that all 
the samples b-elongs to the same model, Eq. (9) can be 
substituted by 

k=l 

k=-, &Uj exp- n- (13) 

The length of the window allows a tradeoff between the 
resolution to detect the boundaries between segments 
and the ability to avoid instantaneous transitions. 

3.2. Initialization via competitive modeling 

The log likelihood function (5) is rife with local maxi- 

ma, therefore a proper initialization of the EM algc+ 
rithm is a key factor in obtaining a satisfactory solu- 
tion. 

A simple alternative consists of partition the data 

into M nonoverlapping segments (M being the number 
of models), which boundaries are selected at random. 
The AR coefficients and variances obtained for each 
segment are used as initial values for the EM algorithm. 

An improved initialization strategy consists of us- 
ing the competitive procedure described in [3]. Starting 

from random coefficient AR models (or using the pro- 
cedure described in the previous paragraph), we iterati- 
vely select at random a sample of the signal and choose 
the model that better predicts t.hat sample. Only that 
model is trained, leaving the rest of the models intact, 
i.e., we use a “winner takes all” strategy. The coeffi- 
cients of the winner model are updated using an LMS 
algorithm. The iterations are carried out until a previ- 
ously specified error criterion is fulfilled or a maximum 
number of iterations is reached. As it is shown in [3], 
after competition each model concentrates on a differ- 
ent stationary segment of the signal. 

Starting the EM algorithm from these tentative mo- 
dels clearly improves the obtained results. 

4. SIMULATION RESULTS 

To verify the proposed algorithm and t.est its perfor- 
mance, we conducted several Monte-Carlo experiment.s 



with simulated data. Here we present the results ob- 
tained using the same quasistationary process conside- 

red in [2]. In particular, we generated a quasistation- 
ary process of 300 points composed of three segments 
of AR processes with two transitions at 81 and 211. 
The first process was of second order with parameters 
ai,1 = -1.37 and ~1 = 0.56. The second one was of 
fourth order with parameters ui,z = -1.6, ~2 = 1.73, 

as,2 = -0.924, and ad,2 = 0.3816; finally, the third one 
was of first order with parameter ~1,s = 0.8. The vari- 
ance of the excitation noise was 1 for the three models. 

A typical realization of this process is shown in Fig. 2. 

Figure 2: A typical realization of the quasistationary 

process. 

The results summarized below were obtained from 
1000 Monte-Carlo simulations. The initial values for 

the EM algorithm were obtained using the competition 
procedure described in Section 3.2. Specifically, we ap- 
plied 2500 iterations with a learning rate of 0.005. With 

these starting values the method gave two transitions 
in 81 % of the cases. On the other hand, without us- 
ing the competitive procedure for obtaining the initial 
models, this percentage reduces to 51 %. 

In order to obtain the posterior probabilities for 

each model we used a window of length 10 (see Eq. 
(13)). As an example of the behavior of the proposed 
algorithm Figs. 3 and 4 show the posterior probabilities 
for model 2 at iterations 1 and 7 (after convergence), 
respectively. A number of iterations between 3 and 20 

leads to convergence in most of the cases. The evolu- 
tion of the log likelihood function for this example is 
shown in Fig. 5. Finally, the mean values and variances 
of the transition and the AR coefficient estimates are 
shown in Tables 1 and 2, respectively. 

Comparing the obtained results with those given 
in [2] and [4], we can conclude that the proposed al- 

Figure 3: Posterior probabilities for model 2 (tz[n]) at 
iteration 1. 

Figure 4: Posterior probabilities for model 2 (tz[n]) at 
iteration 7. 

Figure 5: Evolution of the log likelihood function. 



6. REFERENCES 
Transitions Mean value Standard Deviation 

T1=81 79.1 7 

T2=211 205.4 4.5 

Table 1: Mean values and standard deviations of the 
transition estimates 

Table 2: Mean values and variances of the estimates of 

the AR coefficients 

gorithm approaches the performance of the Bayesian 
formulation of [2] without its high computational cost 
and refines the results of the competitive method in [4] 
with a moderate increase of complexity. 

5. CONCLUSIONS 

This paper has presented a new method for joint seg- 
mentation and AR modeling of quasistationary signals. 
In particular, assuming that the number of models (or 
stationary segments) and their orders is known, the ad- 

dressed problem consists of estimating the boundaries 
between segments and finding the best model for each 

segment. 

The maximization of the likelihood function is car- 
ried out using the EM algorithm. The prediction errors 
obtained for a given set of models are used to estimate 
the probabilities that a sample was generated by a par- 
ticular model (E-step) and, using these estimates, a 
new set of optimal models is obtained (M-step). An ad- 
equate choice of the initial values obtained via compet- 
itive modeling, contribute to achieve fast convergence 
and improved estimates. On the other hand, its moder- 
ate computational complexity makes the proposed al- 
gorithm a useful alternative in many signal processing 
applications such as vibration monitoring of mechan- 
ical systems, fault detection, time series prediction or 
speech modeling. The extension of the proposed ap- 
proach for nonlinear models,(instead of AR), seems to 
us an interesting direction of future research. 
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