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ABSTRACT 

Fractal signals have attracted a lot of attention in var- 
ious fields lately, and numerous algorithms have been 
designed to analyze them. Most of them investigate 
long-term correlations, hence requiring long data sets 
(i.e. data sets extending to very large time scales). 
This requirement is however rarely met in practice, 

which can cast doubts on the reliability of the results. 
This work tries to partially fill this void by analyzing 
a method examining long-term correlations for short 

time series. It is shown the conclusions obtained for 
long data sets remain valid, but there are some par- 

ticular cases that should be taken into account before 
concluding on the fractality of a signal. A practical 
example, namely heart rate recordings, is taken to il- 

lustrate some possible pitfalls that can be encountered 
when real-world short data sets are to be studied. 

1. INTRODUCTION 

Fractal signals have attracted a lot of attention in the 
recent past, since many real-world signals, in particular 
biomedical signals, seem to have this property [l, 2, 31. 
Different methods have been developed to assess the 
fractal nature of a signal, such as the Hurst exponent [4] 
or, more recently, the Allan and Fano factors [5]. 

These algorithms look for long-range correlations, 

and thus take data sets long enough to get rid of the 
short-range correlations. Investigation on the behavior 
of these algorithms has however not been done exten- 
sively for data exhibiting only short-range correlations, 
and it is of interest to have a better understanding of 
their behavior in this context. 

The test that will be studied here is a simplified ver- 
sion of Hurst’s method. It was proposed by Buldyrev et 
al. (see [S] and refs therein) for the analysis of biomed- 
ical data, namely DNA sequences, but has proved to 
be useful in other fields of biomedical engineering, such 

as heart beat or membrane channel openings record- 
ings. The more classical Hurst analysis could also be 
used, but the former method basically yields the same 
results, and is faster. Its behavior is studied in the 
presence of short data sets, and an application to heart 
rate signals is presented. 

2. ROOT MEAN SQUARE FLUCTUATION 
FUNCTION 

The mean square fluctuation function [7] examines the 

correlations across scales, by showing the differences 
between samples separated by a time lag 1 with respect 
to this lag. If the signal is fractal, its evolution obeys a 
power law whose exponent is similar to the Hurst one. 

In practice, the procedure consists in first comput- 
ing the difference function d(2) 

d(Z, n) = z(72 + 1) - z(n) (1) 

where z(n) is the time series of interest. One then com- 
putes the mean-square fluctuation function F(Z) itself 

P(E) = cP(Z,n) - d(l,2 (2) 

The horizontal bar stands for the average with respect 
to n, so that this averaging yields the mean square 
difference for a given lag. 

In the case of a fractal signal, the mean square fluc- 
tuation function follows a law of the form 

F(Z) - CaQ (3) 

where a is a given parameter, and cr is the exponent 
of the power law. In general, it can take one of the 
following forms: 

(1) F(Z) N ZO. This type of behavior implies that 

there are correlations on all scales, or self-similarity. 
Q = 0.5 is a critical value: It is characteristic of 



Brownian motion, a specific scale-invariant pro- 
cess that is independent, contrary to classical frac- 
tals (see [B], chapter 9, for a thorough explanation 
on Brownian motion, fractional Brownian motion 
and their difference). When Q > 0.5, the process 
is persistent: An increasing (decreasing) trend in 

the past implies an increasing (decreasing) trend 
in the future, whatever the time scale. On the 
contrary, if a < 0.5, the process is anti-persistent, 
i.e. an increasing trend in the past implies a de- 
creasing trend in the future. 

(2) w - 1 - eelIR. In this case, there are corre- 

lations across scales, but extending only up to a 
range R. The asymptotic behavior is thus un- 
changed from the purely random case (i.e. white 
noise). 

(3) When neither of the preceding forms is encoun- 

tered, further study is necessary. We will focus 
on this case for the remainder of this work, since 
the two former cases are already well-known. 

These properties can be seen in a straightforward way 
on a log-log plot of F(Z). If the signal is uncorrelated, 

the curve is a straight horizontal line. If the signal has 
some sort of self-similarity, one has a straight line with 
a slope different from cy = 0. If this straight line tends 
to saturate, it usually means that there are correlations 

only up to a given range. 

3. ANALYSIS OF THE ALGORITHM 

The problem of the above analysis is that it is valid 
only for infinite time series, on which all scales can be 
observed. In practice, the results are the same for finite 
data sets, provided their length is sufficient for a large 
number of scales to be observable, i.e. the difference 
function can be computed up to large lags. Here again, 
the problem is that such long time series are often not 
available, and it is by no means assured that the theo- 
retical results will still be valid in practical situa.tions. 

Performing an analytical study of the results for 
short data sets is not possible in general. It is thus 

necessary to resort to simulations. The algorithm was 
thus applied to a wide variety of signals: Synthetic 

time series, such as fractional Brownian motion, sim- 
ple Brownian motion, white noise, autoregressive (AR) 
processes, chaotic signals (among which the Rijssler 

system or the logistic map); noise was superimposed on 
some of these signals, in order to study the reactions 
of the algorithm in what is the most usual real-world 
case. All time series were limited to 1000 samples. 

Figure 1: Examples of the behavior of the mean-square 
fluctuation function for different signals. a) fractional 

Brownian motion: b) AR(l) process, c) AR(2) process, 
d) random white noise, e) the Rijssler system and f) 
t,he Hhnon map. Theses plots cover all the observed 
behaviors. 

Figure 1 shows the reaction of the mean-square fluc- 
tuation function to several kinds of signals. The behav- 
ior of Fig. 1.a) is well predicted by theory: a straight 
line remains indicative of a fractal, whatever the length 
of the data. The deviation of the curve close to its end 
is not surprising either: for larger lags, the number of 
differences on which the computation of F(Z) can be 
done is reduced, which lowers its accuracy. 

Figure 1.d) also corresponds to what was expected. 
Any signal having a flat spectrum indeed exhibits a flat 
mean-square fluctuation function whatever the lag and 
the number of points. The increases in the deviations 
widths around the trend in Fig. 1.b) and 1.d) also re- 
sult from the decreasing number of points available to 
compute the average fluctuation at larger scales. 

Figures 1.b) and 1.~) are less trivial to interpret. 
Figure 1.b) is rather similar to Fig. l.a), except that 
the overall shape of the figure is convex. This behavior 
is characteristic of stochastic signals exhibiting some 

sort of structure, such as ARMA processes, with the 
exclusion of fractals. Fig. 1.~) is essentially similar to 

the preceding one, except for the ripples. Experiments 
have shown that these ripples are characteristic of peri- 
odicities in the signal. In particular, they can be seen in 
strictly periodic signals, but also in all AR(n) processes 



(provided n > l), as well as in nonlinear systems. 
Figures 1 .e) and 1 .f) show the results for two chaotic 

systems. As expected, none of them exhibit a straight 
line. Moreover, the shape of F(Z) depends on the par- 
ticular process at hand. For instance, the important 
ripples that are seen on Fig. 1.e) come from the peri- 
odicities of the R.Bssler system. 

b) I 

Figure 2: Effect of noise on AR(l) process (a, c, e) and 
fractional Brownian motion (b, d, f). a) and b) F(Z) 
for different amounts of noise (l%, 5%, lo%, 15%, 20%, 
25%), c) and d) 5% of noise, e) and f) 20% of noise (the 
percentages are the percentage of noise in the overall 
signal) 

When noise is added to a signal, the mean-square 

fluctuation function is significantly altered. Figure 2 
shows the alteration for AR(l) and fractional Brownian 
motion results, and sums up all possible behaviors that 

can be encountered in practice. It can be inferred from 
the theoretical behavior of F(Z) that the presence of 
noise will tend to flatten the curve toward a flat line, 
which can indeed be observed by comparing Fig. 2.a) 
and 1.b). 

Figure 2.b) also reveals an unexpected effect: the 
noise renders F(Z) concave. This can however be easily 
explained: Because of the stationarity of the signal, the 
signal-to-noise ratio tends to be lower for small lags. 
This results in a flattening of the curve for t.he smaller 
lags I, while for larger lags the behavior is distinctly 
a power law. Since the transition between both must 

be smooth by definition of F(Z), these characteristics 

can only result in a concave behavior (which is put in 
evidence on Fig. 2.f). 

A similar reasoning can be applied to the AR pro- 
cess and its corresponding F(Z) curve. We have seen 
above that the higher SNR for small lags results in a 
flattening of the F(Z) curve. Thus, when noise is ap- 

plied to the AR(2) process, the superposition of the 
noise-free convex curve and the flattening effect of the 
noise will first result in a straight line, while, when the 
overall level of noise is high enough, F(Z) will take a 

somewhat concave appearance (Fig. 2.e). 

4 b) _-.. -_ 

Figure 3: Effect of the length of the data on AR(l) 
process (a, b, c) and fractional Brownian motion (d, 

e, f). a) and d) F(Z) for (bottom to top) time series 
of 3000, 2000, 1500, 1000 and 500 samples. b) and e) 
show F(Z) for 1500 samples, c) and f) for 500 samples. 

The effects of the length of the recording on F(Z) 
are by no means surprising. It has already been men- 

tioned that the accuracy of the computation for a given 
lag depends on the number of points in the time se- 
ries. It is indeed obvious that, if the lag between sam- 
ples is of only some points, the averaging performed in 
eq.( 2) will be much closer to the expected value than 
the average made for a lag close to half the duration 
of the recording. A decreased number of samples in 
the recording will thus decrease the amount of lags for 
which the computation of F(Z) will be accurate, hence 

the size of the usable part of the Zog[F(Z)] vs 1 curve. 



The displacement of the curve origin that can be seen 
on Fig. 3.b) is purely random, and comes from the fact 
that a new realization of the fractional Brownian mo- 

tion process has been used for each simulation. 

Computing the exponent of the process is not a dif- 
ficult task, but it will not be done, since the result is 
not accurate. It is indeed difficult to automatically se- 
lect the suitable part of the curve. Besides, given the 

limited amount of data that is available, the numerical 
result will be unreliable. 

In most practical cases, all that is available from 
a system is the observation of a time series, for which 

the amount of noise in unknown. The observation time, 
hence the amount of data, is limited, and little is known 
about the system itself. It can then be of help to sum- 
marize the results obtained so far according to the qual- 

itative behavior of the F(Z) curve. The different results 

can be: 

l A straight line of non-nil slope: In this case, 
the process under study is likely to be a pure 

fractal, and a fractal analysis can be conducted 
in order to characterize it. It is however possible 
that the underlying process is a random process 

with a non-flat spectrum, with some noise super- 
imposed on it. 

l A straight line of slope cx = 0: The process 
under study is a wide-band process. All that can 

be said is that it is not a fractal one, and that 
there are no periodicities in it. Nothing can be 

said about the amount of noise in the signal, and 
the available amount of data will have no influ- 
ence on this fact. 

l A convex curve: In this case: further studies 
must be conducted in order to determine the type 
of process one is dealing with. It can also be the 

result of the analysis of a fractal signal with a 
very limited amount of data (typically less than 
what is necessary to cover at least one period of 
the signal). 

l A curve with ripples: The ripples are always 
indicative of some kind of periodicities in the sig- 
nal. It is to be noted that they can have various 
origins: On Fig. l.c), they come from a stochastic 
process, while on Fig. l.e), their origin is to be 
found in a deterministic process. 

l A concave curve: This always indicates the 
presence of noise in the signal. This shape can 
either be the result of a fractal process with noise 
superimposed on it, or of a non white process that 
is severely plagued with noise. 

With this in mind, it is now possible to apply the 
mean square fluctuation function to real world data, 
namely heart-rate recordings. 

4. APPLICATION ON HEART RATE 

The mean square fluctuation function was applied to 
two groups of patients, control subjects, suffering from 
no known disease, and patients having recently under- 
gone a heart t.ransplant. Typical results are given on 
Fig. 4. 

a) **F b, =:El .’ ,’ ,-’ *’ 
Figure 4: Typical mean square fluctuation function for 
a) control subjects, b) heart transplant patients 

Figure 4.a) indicates that the normal heart rate is 
not fractal, and that some sort of periodicity is present 
in the signal. The latter can be readily explained, since 
respiration modulates the heart rate in a regular fash- 
ion. Interesting to note is the fact that this periodic 
feature even more readily visible in the mean square 

fluctuation function than it is in the corresponding fre- 
quency periodogram: 

Figure 5: Periodogram of the heart rate recording of 
a control subject. The respiration peak is located be- 
tween 0.1 and 0.15 beats-l 

The assessment of fractality is more complicated to 
settle. The heart transplant results are indicative of 

a fractal component plagued with noise (compare with 
Fig. 2.f). However, Fig. 4.b) does not give any evidence 
of fractality in normal human heart beat. This seems 
at first sight in contradiction with the results found 



in many articles, such as [9, 11. This may however be 

explained: In the present work, only short-term corre- 
lations are taken into account, while the other papers 
examine the correlations exclusively on middle to long 
time scales. It is very likely that there exist short-term 
correlations that hide the long-range structure of the 
healthy heart rate. 

These indications of fractality or no fractality are 
however not safe-proof. The last section has shown 

that several signals could be at the origin of the ob- 
tained plots. In the case of heart transplant record- 
ings, two types of signals can match the results: either 
a fractional Brownian motion of some sort, on which 
noise is added, or an AR(l) process with a low signal- 
to-noise ratio. The normal heart rate, on the other 
hand, could be modeled either by an AR(l) process, 
a stochastic process of white spectrum, or fractional 
Brownian motion with some noise added. In all cases, 
an AR(2) process should be added in order to model 
the influence of the respiration on heart rate. 

All hypotheses were tested, the accuracy of the mod- 
eling being assessed by the mean absolute error be- 
tween the F(Z), the time series and the power spectral 
density of the model and the signal. The best mod- 
els found for heart transplant patients are fractional 
Brownian motions of exponent /3 = 2.0, together with 
an AR(2) process taking the respiration into account, 
and some background noise. The control subjects, on 
the other hand, are best modeled with an AR(l) pro- 
cess? on which an AR(2) process and some noise are 
added, for the same reasons as before. 

It can thus be concluded that an isolated heart 
rate (the transplanted heart is not linked with the cen- 
tral nervous system) seems to be fractal, while the 
healthy heart is not, or at least that the latter ex- 
hibit short-range correlations that are strong enough 
to overshadow a possible long-range structure. 

5. CONCLUSION 

This paper addressed the behavior of a method inves- 
tigating long-range correlations for short data sets, in- 
cluding the effect of observation noise. It has been 
shown that, if some properties are identical to the ones 
predicted by theory, some strange unpredicted behav- 
iors can appear, such as concave of convex curves. Each 
case is analyzed, and it is shown that a convex curve is 
indicative of a non-fractal non-periodic system, while 
concave curves are indicative of a fractal process con- 
taminated with noise. Ripples may appear in any con- 
figuration, and are in every case indicative of the pres- 
ence of some kind of periodicities in the signal. 

This method has also been applied to real-world sig- 

nals, in this case heart rate data. The results show that 
some evidence of fractality is visible, but this remains 
to be confirmed. It has indeed be seen that no final 
conclusion could be drawn directly from the F(Z) plots, 
since similar plots can have different origins. While be- 
ing of much use to test if a signal could have fractal 
properties, it is not sufficient to assess the nature of a 
signal, at least in the case of short data sets. Further 
inquiries, such as hypothesis testing or modeling need 

to be performed in order to reach reliable conclusions. 
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