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ABSTRACT 

In this paper we study some robustness aspects of the 
Recursive Approaching Signal Filter (RASF) by deriv- 

ing the influence functions for every iteration stage. 
The existence of the influence function for the whole 
estimator is studied. Guidelines for the selection of a 

suitable weighting parameter and initial reference val- 
ues in order to support the robustness of the estimator 
are also given based on the influence functions. An 
example of a case where the behavior of the RASF is 
extremely non-robust in the influence function sense is 

presented. 

1. INTRODUCTION 

The RASF [5] is a recursive method for removing noise 

from signals! based on the idea that a filtered signal 
output is ideally closer to the unknown desired signal 
than the input. The larger the difference between the 
original input signal and the filtered output at a certain 
point, the more probably the sample at that point is 
an outlier and should be dealt with accordingly. A new 
filter can be constructed as a weight,ed average with 
each window sample weighted according to how far it is 

from the previous filtered output at the window center. 
The filter is made recursive by computing the weights 

in each filtering iteration in the above manner. These 
iterations should eventually converge to a fixed point. 

The discrete version of the RASF is defined as fol- 
lows, [5]: The output of the a-weighted discrete Recur- 
sive Approaching Signal Filter at 10 using a window of 
length 2L + 1 is the limit of the sequence R(“)(Q) its 

k + 00, 

wk(X;xO) = e -4R(*)(a)-g(z)I 
=o-bL 
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R(k+l)(xo) = ‘==y& 7 (1) 
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1=*0-L 

where the initial condition is @‘)(x0) = T[g(xo)], g(.) 

is the input signal, a is a positive real number, and 
T(.) is a filter, typically lowpass (e.g., median or mean). 
The function wk (z; x0) contains the weight for the sig- 

nal value at window position x - 10 when the filtering 
window is centered at 10 at the kth iteration st,ep. 

The RASF was designed as a flexible filter which 
can be easily transformed into different filters, either 
linear or nonlinear, by changing the weighting parame- 
ter a [5]. ‘I’he estimator was designed to preserve edges 
and other details while removing noise. 

2. INFLUENCE FUNCTION 

The influence function (IF) is a tool for inspecting some 
aspects of the robustness of an estimator. It measures 

the effect on the output of the estimator caused by 
infinit,esimal contamination at a certain point in the 
model distribution, that is, slight deviation from the 
model, and it is defined as follows [l]: 

1F~(x; F) = lim 
T((l - t)F + tA,) - T(F) 

t+o+ t (2) 

in those x where the limit exists. T is the estimator, 

F is the assumed distribution with the density f(x), 
and A, is the distribution with an impulse at point x. 

Fig. 1 shows the influence function of the mean and the 
median [l], assuming the standard normal distribution 
(or ‘any other symmetric, zero-mean distribution, with 
changes only in the constant value of the IF of the me- 
dian; in addition, the cumulative distribution function 
of F must be continuous at 0 for the median to exist). 

Certain mea.surcs for the robustness of the estima- 
tor can be derived from the influence function, the most 
straightforward of which are the gross-error sensitivity, 

the rejection point, and the asymptotic variance [l]. 
The gross-error sensitivity can be defined as the supre- 
mum of the absolute of all values of the influence func- 
tion, and it measures the worst influence which a small 
amount of contamination can have on the output of the 
estimator. The rejection point is the smallest positive 



Figure 1: Influence function of the mean (y = x) and 

of the median (y = w). 

x such that the influence function is zero outside the 
range [-x, x], and, if finite, it indicates absolute rejec- 
tion of some samples considered as outliers. For the 

mean and the median, the rejection point is co, that 
is, neither estimator totally discards outliers, but the 
gross-error sensitivity for the median is & .and 00 for 

the mean, indicating better robustness for the median. 
The asymptotic variance is defined as 

VT(F) = / -~ (IFT(x; F))2dF(~), (3) 
J-CO 

where the notation dF(x) is read as f(x)dx. In most 
cases the distribution of the estimator is asymptotically 
normal, i.e., as the window size N = 2L + 1 grows 

to infinity. The distribution of the estimator output, 

TN tends weakly to the normal distribution, having 
zero mean and the variance l+(F)/N, assuming that 
T(F) = 0. 

The influence function of the first iteration of the 
RASF for a symmetric zero mean distribution F can 

be shown to be as follows (the derivation is presented 
in the Appendix): 

IF1(x; F) = 

where we use the subscript of IF to denote the number 
of the iteration of the RASF to shorten the notation. 
Elsewhere, the subscript denotes the estimator itself. 
The assumption in the derivation for Eq. 4 is that 
T(F) = 0. 

From Eq. 4, we can further derive the influence 
functions for any iteration round, obtaining 

IFk(x; F) = 

Let us denote s-“, crl<le-*l~ldF(<) in Eq. 5 with 

the symbol b and s-“, e -*lEld~(<) with the symbol c, 

so that we can write the formula in the following form: 

IFk(X; F) = 
xemal”l + b . IFk-l(X; F) 

C 
(6) 

The influence function for the whole estimator is the 
limit of this function sequence as k + 00, if this limit 
exists. The convergence of the sequence is considered 
in the next section. If the sequence converges and the 
limit exists, we can write Eq. 6 in the form 

IF,(x; F) = 
xesalrl + b . IF, (x; F) 

C 
(7) 

and solve it for IF,. Then we obtain 

IF,(z; F) = s. 

The above reasoning is consistent with what we 
know from the theory of M-estimators [2]. It has been 
shown in [4] that the RASF is an M-estimator, whose 
defining $-function is $J(x) = xemalZl, with the esti- 
mator converging to a limit. For M-estimators, the 

influence function is of the form 

IF(x; F) = @4x) 

j--“, P(F)@(E) ’ 

which here means a scaled version of the function xeWcrl+l 
(Fig. 2). 

Figure 2: Graph of the function f(x) = xe-“lzl, with 
a= 1. 

2.1. Robustness properties 

The fact that I~?T(E; F), the influence function of the 
estimator used for obtaining the initial reference value, 
occurs in Eq. 4, is of interest. It shows the significance 
of the choice of this estimator for the robustness of the 

RASF in the first rounds (see Fig. 3). The difference 



(a) Mean as the initial reference (b) Mean as the initial reference 

value, 1st round. value, 2nd round. 

(c) Mean as the initial reference 
value, 3rd round. 

(d) Median as the initial refer- 

ence value, 1st round. 

(e) Median as the initial reference 

value, 2nd round. 

(f) Median as the initial reference 

value, 3rd round. 

Figure 3: Influence functions of the first three rounds of the RASF with different initial reference values assuming 
the standard normal distribution, Q = 1 

in the speed of convergence of the influence function 
immediately affects the robustness of the initial stages 

of the estimator and thus the reliability of the first 
intermediate outputs. 

From Fig. 3 we see that with the median as the 
initial choice, the influence function approaches y = 
ZIX-~I”I (scaled) much faster, inheriting at the same 

time the robustness of the median, whereas with the 
mean as the initial choice, the effect of the influence 

function of the mean is still quite strong in the first 
rounds, indicating greater non-robustness for more dis- 
tinct outliers (cf. Fig. 1). 

The influence function, when it exists, has a finite 
gross-error sensitivity and an infinite rejection point.. 

The asymptotic variance of the RASF (with cy = 1) for 
the standard normal distribution is VRA~F(N(O, 1)) M 
1.38, while V,,,, (N(O,l)) = 1 and Vk.d(N(O, 1)) w 

1.57. Thus, in this sense the RASF is slightly bet- 
ter than the median but worse than the mean. For 
Laplace distribution L(0, 1) the asymptotic variances 

are Vi~w(L(0,l)) M 0.60, V,,,,(L(O, 1)) = 1, and 

Vmed(L(O, 1)) = l/2. Ag ain, the RASF is between the 

mean and the median, closer to the median. 

2.2. Convergence 

We have obtained a recursive formula for the influence 
function of the RASF, and, on the other hand, we know 
that the RASF converges to a limit. The next question 
is the convergence of the influence function sequence. 

In other words, does a single sample contribute to the 
output in a controlled way, that is, is its effect bounded, 
indicated by the convergence of the influence function 
sequence to a limit? Moreover, if the sequence con- 
verges, what is the speed of its convergence? 

We can write the difference of two consecutive in- 
fluence functions as follows using Eq. 6 for IF,+1 (XC; F): 

IFk(t; F) - IFk-l(z; F) = 

i(IFk-l(t; F) - IFk-2(2; F)). 

(10) 

So, the influence function sequence can be said to con- 
verge linearly when b < c, in which case the influence 

function of the RASF is the limit zs. The quo- 
tient b/c determines the speed of convergence, in that 
the smaller is b/c (it is positive in all cases), the faster 
the sequence converges. Likewise, the speed of diver- 

gence grows with the quotient b/c. This knowledge is 
useful if we have fixed beforehand the number of iter- 
ations that we are going to use. This situation is very 



likely, since the computation complexity of the RASF 
is relatively high, as noted in [3]. 

The value of b/c depends only on cr and the dis- 
tribution F. In other words, for a given distribution, 

the weighting parameter cr decides the amount of the 

robustness measurable by the influence function. This 
means that we can control the robustness of the RASF 

by setting (Y suitably. In [3], it was observed that the 
performance of the RASF in the MAE (Mean Absolute 
Error) sense depends very heavily on the chosen value 
for CY when the first few iterations are studied. 

Now we show that there exist hea.vy-tailed distri- 

butions for which b/c is greater than 1. Let us assume 
the following distribution: 

f(x) = 0.5(6(x - i -0.001) +6(x+ $ +O.OOl)), (11) 

with CY given; S(X) is the Dirac delta function. To alle- 
viate the non-uniqueness of the median, the mean was 
used for plotting the influence functions for a first few 
iterations. Now: with cr = 1, the influence function 
sequence diverges for the distribution of Eq. 11 and 

converges for the standard normal distribution. Fig. 
4 shows the diverging case, where the sequence st.arts 
with the curve that most closely resembles the line 
y = c and starts to change towards the general shape 
of the curve y = ze-l”1. However, at the same time the 

absolute values of the functions of the sequence become 
arbitrarily large, indicating increasing non-robustness. 
A converging case is presented in Fig. 5, where the 

functions approach the curve y = e. 

Figure 4: Diverging influence function sequence with 
the distribution of Eq. 11, (Y = 1. The sequence starts 
with the curve which is closest to line y = x. 

In the case of Fig. 4, the divergence means that 
the estimator becomes more and more non-robust as 
the number of iterations grow. However, the RASF 

converges, with the output approaching the point of 
the impulse on the same side where the deviation from 
the assumed distribution occurred, in which case the 
deviation causes a large bias on the output. 

Figure 5: Converging influence function sequence with 
the standard normal distribution, Q = 1. The sequence 
starts with the curve which is closest to line y = 2. 

3. CONCLUSIONS 

An influence function was derived for each iteration 
step of the RASF, and the existence of the influence 
function for the whole estimator was studied based on 

the convergence of the sequence of the derived influ- 
ence functions. From the influence function, it is pos- 
sible to obtain measures for the robustness of each it- 
eration output and of the final output. A simple test 
was given for finding out whether the non-robustness of 
the RASF in the influence function sense stays within 
bounds or grows arbitrarily large, and examples were 
given of both situations. The role of the initial filter 

was shown to be important for the robustness of inter- 
mediate results during the first iterations. 
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APPENDIX 

The definition of the influence function can also be given as 

a 
IF(x; F) = dX {A(F + W, - F)))x,o, 

where A(F) is the estimator in question expressed in the form of a functional, assuming distribution F. 
The functional for the first round of the RASF for distribution F can be expressed as 

(12) 

(13) 

so that the influence function for the first round can be derived as follows (the notation dF(<) is replaced with dF 
for simplification) : 

IF,(x; F) = 

= 

-a,E-T(F+X(A=-F))l~d(F + A(& - F)) 

e-al~-T(F)I . (-a) & { I( - T( F + x(A, - F)) I}x=o [dF 

s-“, elalcldF (xe-+i - f;;;i-:;;f(!:s,, : ; ; } &-‘) 

xe --QIzI + J-“, cr<e-al~lsign(<)IFT(x; F)dF 

J-“, e-alcldF 

xe-“I”1 + IFT(x; F) J-“, crl<lemalcldF 

s-“, emaIEldF ’ 

In the derivation we make use of the fact that, with the assumptions stated in Section 2, J-“, e-QI~-T(F)I~dF = 0. 
Derivation and integration are interchanged keeping the usual precautions in mind. 


