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1. SUMMARY 

Robust estimation is not a new subject of study. In- 
deed, it is a major problem in statistics and signal pro- 
cessing. For example? Huber notes in 1964 [6] that 
when the true distribution deviates, even mildy, from 
an assumed Gaussian, the variance of the sample mean 
may explode. This motivated his pursuit of a general 
theory of robust estimation. As stated in the survey 
talk [8], “robust signal processing techniques are tech- 
niques with good performance under any nominal con- 
ditions and acceptable performance for signal and noise 
conditions other than the nominal which can range over 
the whole of allowable classes of possible characteris- 
tics”. A common approach to robust estimation is to 
make use of minimax techniques, which offer optimal 
worst-case performance. 

This talk considers filtering problems where it is de- 
sired to estimate a function of a signal state using the 
information available in certain noisy observations of 
the signal. When the least squares criterion is used and 
when we assume the plant is completely and accurately 
described by an assumed model, then the optimal es- 
timator is the conditional mean, computed using the 
assumed model. In view of the problems which can be 
encountered when the plant deviates from the assumed 
model, we consider, following Huber, the use of other 
error criteria. The risk-sensitive criterion is one such 
alternative, and in the context of robust control theory, 
it is known to enjoy robustness characteristics by virtue 
of its close connection with the H, criterion. For this 
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reason, several authors have considered risk-sensitive 
filters. However, no robustness results for risk-sensitive 
filters have appeared to date in the literature, to our 
knowledge. 

This talk gives a precise meaning to the robust- 
ness of risk-sensitive filters. We assume that the true 
probabilistic model is fixed but unknown, and that the 
estimation (or filtering) procedure makes use of a fixed 
nominal model. It is shown that risk-sensitive esti- 
mators (including filters) enjoy an error bound which 
is the sum of two terms! the first of which coincides 
with an upper bound on the error one would obtain 
if one knew exactly the underlying probability model, 
while the second term is a measure of the distance be- 
tween the true and design probability models. The first 
term quantifies “good performance”under nominal con- 
ditions, and the second term quantifies the “acceptable 
performance”under non-nominal conditions. Further, 
the second term plays a major role in determining the 
clrrss of permissible variations from nominal. 

Suppose we are given a measurable space (52,7) 
and random variables X, Y. Here, Y represents the 
observations (measurements) and C#J = 4(X) is a (real- 
valued) function of X to be estimated by a random vari- 
able f which is y = U(Y) measurable (denoted $J E y). 
Further, let us suppose that we do not know the un- 
derlying probability distribution; however, we assume 
that the “true” distribution I’,,, belongs to a family 
of probability measures {Pa}CrE~, where A is an ar- 
bitrary index set (not necessarily a subset of a finite 
dimensional space). Since we do not know the value 
of the parameter CYO, we use a design value cyd for the 
purpose of constructing the estimator $. It is not nec- 
essary that the design parameter fid belong to A! and 
indeed the results presented in this talk are nonpam- 
metric; the (Y’S are used simply as labels. 

The minim,um risk-sensitive estimator (MRSE) cost 
function is defined by 

L(i) = Eo,b~(w(# - &,I (1) 
where p is a non-negative strictly convex function, 11 > 
0 is a risk parameter, and the MRSE can be defined 



uniquely as the equivalence class of Y-measurable ran- [6] P.J. Huber, Robust Estimation of a Location Pa- 
dom functions achieving the minimum rameter, Ann. Math. Stat., 35, (1964) 492-518. 

&I, = argminf,, (4) 
&Y 

(2) 

In order to write down the error bound below, we need 
to assume that the true measure is absolutely continu- 
ous with respect to the design measure: Pa, << P,,, 

since otherwise the bound is vacuous. The proof of the 
bound follows from the well-known duality between free 
energy and relative entropy. 

Theorem 1.1 Assume there eziata n Y-measurable mn- 
dom fin&ion 4 such that fpB($) < co. Then the MRSE 

defined by (2) exists, and enjoys the following error 

bound: 

where R(P,,IP,,) ia thee relative entropy. 

Signal processing problems where it is reasonable to 
assume “absolutely continuous uncertainty” are com- 
mon, and many results in the literature fall into this 
category (e.g. linear-Gaussian signal models with un- 
certainty in the state transition matrix). In the follow- 
ing sections we study nonlinear filtering problems with 
uncertainty and present MRSE filters and the corre- 
sponding error bounds. 

The remainder of the talk considers filtering prob- 
lems in both the risk-sensitive and H, contexts. 

Full details are available in the paper [l]. 
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