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ABSTRACT 

Different from the least squares criterion for linear 
modcls~ t,hat for nonlinear models may have relative 
minima. If, under the influence of the observations, a 
rclativc minimum becomes absolute, the solut,ion be- 
comes discontinuous in the observations: it jumps. 
Also, if under t,he infiucnce of t.he observations the 
criterion becomes singular, its structure may change. 
Then, for example: solutions for different parameters 
may coincide exactly. Bot.h phenomena, which have 
a substantial influence on the solutions, are discussed 
and explained in a number of numerical examples. 

1. INTRODUCTION 

Nonlinear model fitting criteria may have a structure 
essemially different from the well-known single min- 
imum crit,eriori associated with linear least squares. 
They may have a variety of stat.ionary points: extrema, 
relative ext,rema and saddle-points. Among these, the 
abso1ut.e minimum is most important since it represents 
the solution for the model parameters. With nonlinear 
models, t,he absolute minimum may be discontinuous 
in the observat.ions or the criterion may become singu- 
lar. The purpose of t.his paper is to show the practical 
consequences of discontinuity and singularity for the 
model fitting solution. 

Discontinuity occurs when a relative minimum of the 
criterion becomes absolute if the observations slightly 
change. Then the solutions for the parameters jump to 
new values. This implies that in the Euclidean space of 
the observations closely located points may correspond 
to essentially different solutions for the parameters. For 
example, a minor change in the noise disturbed ob- 
servations of overlapping pulses of different amplitude, 
may abruptly change the relat,ivc position of the larger 

and the smaller pulse in the solution. Therefore, jumps 
may cause large systematic errors in the solubions for 
the parameters. Jumps correspond to a quantitative 
change of the criterion only. The structure of the cri- 
terion in t.lic sense of its pattern of stationary points 
does not change. 

Singularity causes structural change of the criterion 
under the influence of the observations. A minimum 
and a saddle point. may merge to form a singular sta- 
tionary point and subsequently vanish as the observa- 
tions arc changing. Then the structure of the criterion 
depends on the particular realization of the observa- 
tions. Singularity may? for inst,ance, cause the solutions 
for two parameters t.o coincide exactly. This may occur, 
for example, if the observations are overlapping time 
domain pulses, overlapping frcqucncy domain spectral 
peaks, or mult~iexponcntials with components with lit- 
tic differing decays [l]. Coincidence of location para- 
meters or of decays means t.hat only one pulse, spec- 
tral peak or cxponemial is found instead of two. This 
means that coincidences like t,hese set a limit to the 
rcsolvabi1it.y of the separate components [2]. 

The sets of points at which coincidences and jumps 
occur: divide the space of observations into two dis- 
tinct, parts, each corresponding to a particular type of 
solution. Jumping may be explained using standard 
calculus. For coincidence, use is made of singularity 
theory [z]. Then the set of observations for which the 
coincidence occurs is a bifurcation set. 

In the next section, relevant aspects of the structure 
of the least squares criterion are discussed in a numeri- 
cal example. Jumping and coinciding solutions are the 
subject of the remaining sections. 



2. CRITERION STRUCTURE 

Suppose that observations wi ! . .., WN made at the 
points 21, . . . . xN are available and that a model 

a1 9 (xn; h) + a2 9 hi b2) (1) 

is fitted to these observations with respect to the para- 
meters u.1, ~2, bi and b2. This simple model will be used 
in what follows. However: the results presented usually 
also apply if a further function f(x,; c) is added to it 
and the resulting model is fitted with respect to the vec- 
tor of paramet,ers c and a.1 : Q! bi and b2 . For example, 
g (x; 6~:) in Eq.( 1) may be an exponential eebaz. The 
function f(:c; c) may be a trend cl x + cs and possibly 
cont.ain further exponential terms. Alternatively, the 
functions g (xc; hk) may be Gaussian peaks e-i(Z-bk)2 
with locat,ion paramet,ers bk. The results presented 
usually also apply to models that are funct,ions of the 
function described by Eq.( 1). 

Next suppose that the model defined by Eq.(l) is 
fitted in the least squares sense. Then! the criterion is 
described by 

c {wn-a19(xn;h) -a29hb2)j2 (2) 
II 

This is equivalent to fitting 1 n e-“l 2rL + (1 - 1) a e-‘z “n 
wit.11 respect t,o u! bl and b2 for all relevant values of 
1. This parameterization will be used since it is more 
suitable for the purposes of this paper. Notice that 1 
fixes the ratio of al to aa. The criterion is quadratic 
in the linear parameter (1.. Its st.ationary points are all 
found in the parameter subspace where the derivative 
of the criterion with respect to a is equal to zero. If this 
linear equation is solved for a in t.crms of br and b2 and 
the solution is substituted for ~1: the criterion becomes 
a function of bi and b2 only, suitable for plotbing. This 
plot is parametric in 1. To underst.and the sbructure of 
this criterion first suppose that the observations w,, are 
described exactly by X o g (sn; pl) + (1 - X) o g (:I:,~; fi2) 
and that the model fitted to it is of t,hc same paramet.ric 
family. For example, both the observations and the 
model fitted are biexponential. 

Numerical example 1 Let the observations be de- 
scribed by 0.7 e-“71 + 0.3 e-o.8ZVL, that is, Q = 1 X = 
0.7, & = 1 and p2 = 0.8 and let. :r,, = 0.4 x ‘~1 
with n = 1, . . . . 10. Suppose that a model 1 n &‘I Eth + 
(1 - 1) a e-b2 zn is fitted with respect to a.? br and bz 
to these exact observat,ions for I = 0.6. Notice that. 
t,his 1 is different. from X. Also suppose t.hat t,he 
linear parameter a has been eliminat,ed as described 
above. Then contours of the criterion arc shown in 
Fig. 1. In this figure, the vertical and horizontal co- 
ordinate are X br + (1 - X) b and bi - bz, respectively. 

The reason why these coordinates have been chosen 
is that they expose the structure clearer. The plot, 
which is slightly asymmetrical, has two minima and 
a saddle point in between. This structure is charac- 
teristic of this problem for a broad class of compo 
nent functions, criteria of goodness of fit and for all 
1 on (O? 1). The criterion value at the absolute mini- 
mum (br , b2) = (1.0178,0.8242) is 7.96 x 10-l’; that 
at the relative minimum (br, b2) = (0.8586,1.0651) is 
6.67 x 10eg. The criterion value at the saddle point 
(bi, b2) = (0.9287,0.9287) is 4.22 x 10m6. This point is 
always located on the line bi = bs and can be shown to 
represent the least squares solution if a one component 
model, in this example a monoexponential, is fitted to 
the same observations. 
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Figure 1 

3. COINCIDENCES 

The two minima one saddle structure found in Numeri- 
cal example 1 occurred for observations exactly describ- 
able by the model fitted. It has been found that this 
st.ructure may change if the observations are no longer 
exact as a result of additive errors or model errors [I]. 

Numerical example 2 The exact observations of Nu- 
merical example 1 are transformed into those of this 
example by adding the errors 02 = 0.01 and ~4 = 0.01 
to the second and fourth observation, respectively. The 
quantity 1 is kept equal to 0.6. Figure 2 shows the con- 
tours of the criterion for these new observations. The 
two minima one saddle structure has been replaced by 
a single minimum structure. This single minimum is 
located on bi = bs and has replaced the saddle point. 
Since at the minimum bi and b2 coincide, a monoexpo 
nential solution is obtained from error corrupted biex- 
ponential observations. 
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Figure 2 

This numerical example shows that the structure of 
the criterion may be changed by the observations and 
that this causes the least squares solutions for bl and 
bz to coincide. This phenomenon has been discussed 
extensively in [l] where a singularity theoretic expla- 
nation is given. In this reference, it is also shown that 
in the Euclidean space of the observations (WI, . . , WN), 
observations in the region corresponding to the one 
structure arc separated from observations in the region 
corresponding to the other by a secalled hypersurface 
which is a subset of codimension one. Hypersurfaces 
have the property that they divide the space concerned 
into t,wo distinct parts such as a line divides a plane. 
In singularity theory, this hypersurface is called bifur- 
cation set. If the observations of Numerical example 2 
are gradually changed and cross t,he bifurcation set,, the 
corresponding solution for the parameters bifurcates. 
In [l]? a discriminant for on which side of the bifurca- 
tion set a particular set of observations is located for a 
chosen model is also described. Below, the intersection 
of the bifurcation set and the (~2, ~4) coordinate plane 
will be shown in Numerical example 4. 

4. JUMPS 

Different from coinciding solutions, jump discontinu- 
ities in the solutions for the paramet.crs as a funct.ion of 
the observations do not, require the st,ructure of the cri- 
terion to change. Using Numerical example 1, the fol- 
lowing heuristic explanation for their occurrence may 
be given. As mentioned in Section 2. the criterion value 
at the absolute minimmn (01: b,) = (1.0178,0.8242) 
is 7.96 x 10-l’ and that, at t,he relative minimum 
(bl, bz) = (0.8586,1.0651) is 6.67 x 10mg. Intuitively, 
one may conclude that errors in the order of magnitude 
10m4 might be sufficient to make the relative minimum 

absolute. It will be shown in the following numerical 
example that this is true. 

Numerical example 3 The exact observations of Nu- 
merical Example 1 are modified by adding an error 212 
t.o the second observation. For a number of values of 
7~2 the relative and absolute minimum of the criterion 
are computed until the point on the 212 axis is found 
where the relative minimum becomes absolute and, as 
a result, the solutions for a, bl and bz make a jump. 
Next the same is done with respect to 214. The straight 
line connecting both points is subsequently found to 
accurately predict the linear combinations of ‘~2 and v4 
for which the jump occurs. This line is shown in Fig. 
3. The figure shows that the order of magnitude of 
the errors causing the solution to jump from a solution 
with bl > bp to one with bl < b2 is 10m4. 
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Figure 3 

The coordinates al, bll and b2l of the absolute min- 
imum have to satisfy three normal equations. These 
are the nonlinear equat,ions obtained by equating the 
first order part.ial derivatives of the criterion with re- 
spect to c1,bl and Ir:! to zero. The same applies to the 
coordinates (~2: bl2 and b22 of the relative minimum. 
At the jump set., the crit,erion values at the absolute 
and the relative minimum must be equal which pro- 
ducts OIW further equat,ion. Thus the N + 6 variables 
al, bl1 1 bz,, (~2. b12: 022, WI! 1 W,V have to satisfy 7 equa- 
tions. F'rorrl these 7 equations the first six variables 
could. hypothetically, be eliminated. This produces 
one equation in the N observat.ions ‘~1, . . . . WN. This 
equation defines the jump set: the set of all sets of ob- 
servations for which both minima are equivalent. Hav- 
ing codimension one it. divides the Euclidean space of 
the observat.ions in two complemcutary parts. The ob- 
servations in the one part correspond to solutions with 



bl > b and those in the other to solutions with 61 < &. 
Figure 3 shows the intersection of the jump set with the 
coordinate plane (212,~) which is equivalent to the co- 
ordinate plane (~2, ~4) after translation. 

5. JUMPS AND COINCIDENCES 
COMBINED 

In this section, a numerical example is discussed show- 
ing that, the jump set and the bifurcation set divide the 
Euclidean space of the observations into three distinct 
part,s. Only in one of these parts the solutions for the 
parameters qualitatively agree with those of the model 
underlying the observations. 

Figure 4 

Ntimerical ezample 4 As in Numerical example 3: er- 
rors are added to the second and t.he fourth observat,ion 
of the set of exact observations used in Numerical ex- 
ample 1. These errors arc 2’2 and ~4, respectively. Next 
the bifurcation set is comput,ed expressed in these cr- 
rors. For this computation used is macle of a method 
described in [l]. Figure 4 shows this bifurcation set 
along with the jump set described in the previous sec- 
tion and shown around the origin in Fig. 3. The jump 
set stops at the bifurcation set since beyond t,he bifur- 
cation set there is only one minimum and jumps cannot. 
occur. In Fig. 4 observations disturbed by errors in the 
region A correspond qualitatively to exact observations 
since the solution bl for p, is larger than the solution 
b2 for p2. In the regions B and C the solutions satisfy 
bl < b2 and bl = b, respectively. Kcxt consider er- 
rors 212 and P!~ on t.he circle 7); + ,!i = (0.01)2 drawn in 
Fig.4. Then starting at the topmost point of intersec- 
tion with the bifurcation set! travelling anticlockwise 
along the circle and computing the solut,ions bl and b2; 
first produces a bifurcation, then, up011 crossing the 
jump set, a jump and then again a bifurcation. Figure 
5 shows the corresponding solutions as a funct.ion of 

the rotation angle $. Since & = 1 and p2 = 0.8, the 
main conclusion to be drawn from the solutions shown 
is that seemingly small errors may cause relatively large 
errors of a perhaps unexpected nature. 
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Figure 5 

6. CONCLUSIONS 

Jumps and coincidences in nonlinear model fitbiing 
solutions have been discussed. They are caused by 
the nonlinearity of t.hc model and are not revealed if 
the models are linearized as in asymptotical statistical 
model fitting theory [4]. It has also been shown that 
jumps and coincidences may have a considerable influ- 
ence on the solutions and may be caused by seemingly 
small errors. 
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