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ABSTRACT

Different from the least squares criterion for lincar
models, that for nonlinear models may have relative
minima. If, under the influence of the observations, a
rclative minimum becomes absolute, the solution be-
comes discontinuous in the observations: it jumps.
Also, if under the influence of the observations the
criterion becomes singular, its structure may change.
Then, for example, solutions for different paramecters
may coincide exactly. Both phenomena, which have
a substantial influence on the solutions, are discussed
and explained in a number of numerical examples.

1. INTRODUCTION

Nonlincar model fitting criteria may have a structure
essentially different from the well-known single min-
imum criterion associated with linear least squares.
They may have a variety of stationary points: extrema,
relative extrema and saddle-points. Among these, the
absolute minimum is most important since it represents
the solution for the model parameters. With nonlinear
models, the absolute minimum may be discontinuous
in the observations or the criterion may become singu-
lar. The purpose of this paper is to show the practical
consequences of discontinuity and singularity for the
model fitting solution.

Discontinuity occurs when a relative minimum of the
criterion becomes absolute if the observations slightly
change. Then the solutions for the parameters jump to
new values. This implies that in the Euclidean space of
the observations closely located points may correspond
to essentially different solutions for the parameters. For
example, a minor change in the noise disturbed ob-
servations of overlapping pulscs of different amplitude,
may abruptly change the relative position of the larger

and the smaller pulse in the solution. Therefore, jumps
may cause large systematic errors in the solutions for
the parameters. Jumps correspond to a quantitative
change of the criterion only. The structure of the cri-
terion in the sense of its pattern of stationary points
does not change.

Singularity causes structural change of the criterion
under the influence of the observations. A minimum
and a saddle point may merge to form a singular sta-
tionary point and subsequently vanish as the observa-
tions are changing. Then the structure of the criterion
depends on the particular realization of the observa-
tions. Singularity may, for instance, cause the solutions
for two parameters to coincide exactly. This may occur,
for example, if the observations are overlapping time
domain pulses, overlapping frequency domain spectral
peaks, or multiexponentials with components with lit-
tle differing decays [1]. Coincidence of location para-
meters or of decays means that only one pulse, spec-
tral peak or exponential is found instead of two. This
means that coincidences like these set a limit to the
resolvability of the scparate components [2].

The sets of points at which coincidences and jumps
occur, divide the space of observations into two dis-
tinct parts, cach corresponding to a particular type of
solution. Jumping may be explained using standard
calculus. For coincidence, use is made of singularity
theory [3]. Then the set of observations for which the
coincidence occurs is a bifurcation set.

In the next section, relevant aspects of the structure
of the least squares criterion are discussed in a numeri-
cal example. Jumping and coinciding solutions are the
subject of the remaining sections.



2. CRITERION STRUCTURE

Suppose that observations ws,...,wy made at the
points z1, ..., £y are available and that a model

a1 g(Zn; b1) + az g (zn; b2) (1)

is fitted to these observations with respect to the para-
meters aq, as, by and by. This simple model will be used
in what follows. However, the results presented usually
also apply if a further function f(z,;c) is added to it
and the resulting model is fitted with respect to the vec-
tor of parameters c and a1, a9, b; and by . For example,
g (z;bt) in Eq.(1) may be an exponential e~®*%. The
function f(x;c) may be a trend ¢; z + co and possibly
contain further exponential terms. Alternatively, the
functions g (z;br) may be Gaussian peaks e~ (@—be)®
with location parameters by. The results presented
usually also apply to models that are functions of the
function described by Eq.(1).

Next suppose that the model defined by Eq.(1) is
fitted in the least squares sense. Then, the criterion is
described by

Z {wn — a1 9 (zn; b1) —azg(mn;bz)}z (2)

This is equivalent to fitting l @ e ™% #» +(1 — ) ae™b22n
with respect to a,b; and by for all relevant values of
l. This parameterization will be used since it is more
suitable for the purposes of this paper. Notice that !
fixes the ratio of a; to ag. The criterion is quadratic
in the linear parameter a. Its stationary points are all
found in the parameter subspace where the derivative
of the criterion with respect to a is equal to zero. If this
linear equation is solved for a in terms of b; and by and
the solution is substituted for a, the criterion becomes
a function of b, and by only, suitable for plotting. This
plot is parametric in I. To understand the structure of
this criterion first suppose that the observations w,, are
described exactly by Aa g (zn; 81) + (1 —A) a g (xn; By)
and that the model fitted to it is of the same parametric
family. For example, both the observations and the
model fitted are biexponential.

Numerical example 1 Let the observations be de-
scribed by 0.7e7%» 4+ 0.3~ %8 that is, o = 1, =
07,8, = 1and 3, = 08 and let x,, = 0.4 xn
with n = 1, ...,10. Suppose that a model [ae™® *» +
(1—1) ae~b2® ig fitted with respect to a,b; and by
to these exact observations for [ = 0.6. Notice that
this [ is different from A. Also suppose that the
linear parameter a has been eliminated as described
above. Then contours of the criterion are shown in
Fig. 1. In this figure, the vertical and horizontal co-
ordinate are Ab; + (1 — A) by and b, — by, respectively.

The reason why these coordinates have been chosen
is that they expose the structure clearer. The plot,
which is slightly asymmetrical, has two minima and
a saddle point in between. This structure is charac-
teristic of this problem for a broad class of compo-
nent functions, criteria of goodness of fit and for all
l on (0,1). The criterion value at the absolute mini-
mum (by,by) = (1.0178,0.8242) is 7.96 x 10~10; that
at the relative minimum (b,b2) = (0.8586,1.0651) is
6.67 x 107°. The criterion value at the saddle point
(b1,b2) = (0.9287,0.9287) is 4.22 x 10~6. This point is
always located on the line b; = b, and can be shown to
represent the least squares solution if a one component
model, in this example a monoexponential, is fitted to
the same observations.
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Figure 1

3. COINCIDENCES

The two minima one saddle structure found in Numeri-
cal example 1 occurred for observations exactly describ-
able by the model fitted. It has been found that this
structure may change if the observations are no longer
exact as a result of additive errors or model errors [1].

Numerical example 2 The exact observations of Nu-
merical example 1 are transformed into those of this
example by adding the errors v; = 0.01 and v4 = 0.01
to the second and fourth observation, respectively. The
quantity [ is kept equal to 0.6. Figure 2 shows the con-
tours of the criterion for these new observations. The
two minima one saddle structure has been replaced by
a single minimum structure. This single minimum is
located on b; = be and has replaced the saddle point.
Since at the minimum b; and b, coincide, a monoexpo-
nential solution is obtained from error corrupted biex-~
ponential observations.
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This numerical example shows that the structure of
the criterion may be changed by the observations and
that this causes the least squares solutions for b; and
by to coincide. This phenomenon has been discussed
extensively in [1] where a singularity theoretic expla-

nation is given Tn thie rafarance it ig alen shovwn that
NaviCil 15 givelil. il vidls IEICTCNCe, 1y 15 aisC SAOWIL tial

n the Euclidean space of the observations (wy, ..., wy),
‘Ls rvations in the region corresponding to he one
structure arc separated from observations in the region
corresponding to the other by a so-called hypersurface
which is a subset of codimension one. Hypersurfaces
have the property that they divide the space concerned
into two distinct parts such as a line divides a plane.
In singularity theory, this hypersurface is called bifur-
cation sct. If the observations of Numerical example 2
are gradually changed and cross the bifurcation set, the
corresponding solution for the parameters bifurcates.
In (1], a discriminant for on which side of the bifurca-

tion cot a narticular eet of ohearvations ic located for a
t10n sel a pariicuiar set of ODservations 15 :0Caied Ior &

chosen model is also described. Below, the intersection
of the bifurcation set and the (w2, w4) coordinate plane
will be shown in Numerical example 4.

4. JUMPS

Different from coinciding solutions, jump discontinu-
ities in the solutions for the parameters as a function of
the observations do not require the structure of the cri-
terion to change. Using Numerical example 1, the fol-
lowing heuristic explanation for their occurrence may
be given. As mentioned in Section 2, the criterion value
at +ho ahanhits minimum (A b)Y — (1 0172 0N Q249)
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is 7.96 x 10710 and that at the relative minimum
(by,b2) = (0.8586,1.0651) is 6.67 x 1079, Intuitively,

one may conclude that errors in the order of magnitude
10~* might be sufficient to make the relative minimum

absolute. It will be
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Numerical example 8 The exact observations of Nu-
merical Example 1 are modified by adding an error vy
to the second observation. For a number of values of
v the relative and absolute minimum of the criterion
are computed until the point on the vy axis is found

where the relative minimum becomes a absolute ana as
a result, the solutions for a,b; and by make a jump.
Neovt {-ho camo ic dona “n+h racnact ta . Tha atraiaht
ANTAL LUT ST a5 QULC Vil ICOPULLY vO V4. 1 11C Suiaagilv

line connecting both points is subsequently found to
accurately predict the linear combinations of ve and vy
for which the jump occurs. This line is shown in Fig.
3. The figure shows that the order of magnitude of
the errors causing the solution to jump from a solution
with b; > by to one with by < by is 1074,
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imum have to satisfy three normal equations. These
are the nonlinear equations obtained by equating the
first order partial derivatives of the criterion with re-
spect to a,by and by to zero. The same applies to the
coordinates as,bio and byy of the relative minimum.
At the jump set, the criterion values at the absolute
and the relative minimum must be equal which pro-
duces one further equation. Thus the N + 6 variables
ai,b11,b21,a2,b12, bao, w1, ..., wn have to satisfy 7 equa-
tions. From these 7 cquations the first six variables
could, hypothetically, be eliminated. This produces

onc equation in the N observations wy,...,wy. This
acmatinn dofinne tha 3 SAInp +ha ant AF all gata ~F AL
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oth minima are equivalent. Hav-
ides the Euclidean space of

servations f which b
ing codimension one it div

the obsenatlons in two complemcntary parts. The ob-
servations in the one part correspond to solutions with



b1 > by and those in the other to solutions with b; < ba.
Figure 3 shows the intersection of the jump set with the
coordinate plane (vq, v4) which is equivalent to the co-
ordinate plane (wg,wa) after translation.

5. JUMPS AND COINCIDENCES
COMBINED

In this section, a numerical example is discussed show-
ing that the jump set and the bifurcation set divide the
Euclidean space of the observations into three distinct
parts. Only in onc of these parts the solutions for the
parameters qualitatively agree with those of the model
underlying the observations.

—_— T T ——

0.01+

0.005

-0.005

0.0t s L s L
-0.01 -0.005 0 0.005 0.01 0.015

Figure 4

Numerical example 4 As in Numerical example 3, er-
rors are added to the second and the fourth observation
of the set of exact observations used in Numerical ex-
ample 1. These errors are vz and vy, respectively. Next
the bifurcation set is computed cxpressed in these er-
rors. For this computation used is made of a method
described in [1]. Figure 4 shows this bifurcation set
along with the jump set described in the previous sec-
tion and shown around the origin in Fig. 3. The jump
set stops at the bifurcation set since beyond the bifur-
cation set there is only one minimum and jumps cannot
occur. In Fig. 4 observations disturbed by errors in the
region A correspond qualitatively to exact observations
since the solution b; for 3, is larger than the solution
by for B,. In the regions B and C the solutions satisfy
b; < by and b; = by, respectively. Next consider er-
rors v2 and v4 on the circle v§ + v = (0.01)? drawn in
Fig.4. Then starting at the topmost point of intersec-
tion with the bifurcation sct, travelling anticlockwise
along the circle and coniputing the solutions b, and b,
first produces a bifurcation, then, upon crossing the
jump set, a jump and then again a bifurcation. Figure

-

5 shows the corresponding solutions as a function of

the rotation angle ¢. Since 8, = 1 and 3, = 0.8, the
main conclusion to be drawn from the solutions shown
is that seemingly small errors may cause relatively large
errors of a perhaps unexpected nature.

6. CONCLUSIONS

Jumps and coincidences in nonlincar model fittiing
solutions have been discussed. They are caused by
the nonlinearity of the model and are not revealed if
the models are lincarized as in asymptotical statistical
model fitting theory [4]. It has also been shown that
jumps and coincidences may have a considerable influ-
ence on the solutions and may be caused by seemingly
small errors.
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