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ABSTRACT 

A technique to find repetitions in a laryngeal 
signal such as the volume velocity seems to 
identify the moments at which the larynx 
changes mode. The technique is based on the 
“close-returns plots” that have been used in the 
past. Pictures derived from the technique may 
help identify the segments when the laryngeal 
dynamics are confined to one attractor, a 
necessary condition for most nonlinear- 
dynamics processing. The technique appears 
equally useful for identifying such attractor 
changes in any nonlinear dynamical flow. 

1. MOTIVATION AND INTRODUCTION 

We are studying the application of tech- 
niques from nonlinear dynamics (NLD) to the 
analysis of voice. We hope that the concepts 
and quantities relevant to NLD will describe 
voice disorders better than those relevant to 
statistics have. [Ludlow et al., 19871 For 
example, the negative Lyapunov exponents 
[Peitgen et al., 1992; Titze et al., 1993; 
Abarbanel, 19961 measure energy dissipation 
rates in laryngeal motion. In a prolonged vowel 
(%ay ‘aaah”‘), we might find that these 
exponents correlate with tissue pathologies 
such as edema or atrophy, simply because of the 
role that the tissues play in dissipation. 

Most NLD techniques that provide numeri- 
cal measures such as the exponents require that 
the system remain in or near (and converge to) 
a single attractor. (The measures are, in fact, 
parameters specific to an attractor.) In ideal 
cases, the familiar laryngeal phonation registers 
(normal, falsetto, and pulse) may identity dis- 
tinct attractors; in practice, these labels proba- 
bly often ignore certain subtler distinctions. 

As we will see, the larynx may experience 
several changes of attractor in a prolonged 
phonation (-1 set). Although it has proved 
possible in earlier work to extract consistent 

estimates of Lyapunov exponents over much 
shorter times, it is important to apply the analy- 
sis only to a single attractor at a time. But how 
can we know if the dynamics has changed, and 
how can anyone hope to notice, either quickly 
or without long training? 

2. ATTRACTORS FOR THE LARYNX 

Fortunately, attractors are qualitative fea- 
tures of the dynamics, so we can presume the 
larynx to move under the influence of a single 
attractor at least for short intervals. Unfortu- 
nately, it is not always easy to verify that the 
laryngeal dynamics has remained in one attrac- 
tor, especially without detailed inspection of the 
waveform of the acoustic or other signal we 
have collected. 

Worse, if the motion is far from periodic, it 
may be difficult to detect changes even by 
inspecting the waveform visually (or acousti- 
cally/spectrographically) - especially in the 
presence of noise. Qualitative changes in a 
biphonation,’ such as a period-doubling of one 
of the “fundamental” frequencies due to a small 
but critical change in muscular tension, may be 
too subtle to notice in an already complicated 
signal. If the dynamics is already deterministi- 
tally chaotic, this is almost certainly true, since 
the waveform cannot show any long-range 
predictability and its spectrum, even without 
noise, cannot be not discrete. 

3. PERIODIC ORBITS IN ATTRACTORS 

Periodic orbits are a critical feature of vir- 
tually all attractors - chaotic and otherwise.2 

’ Characterized by two independent “fundamental” fre- 
quencies. The term is sometimes recommended 
w.Hcn.el, pers.comm.; I.Titze, persxomm.] over the 
more conventional diplophonia in order to avoid confu- 
sion with period-doubling (occurrence of the first 
ybharmonic). 

We omit consideration of point attractors - those in 
which the system state is merely a constant, such as the 



Specifically, if an orbit follows an attractor and 
is not chaotic, then it must consist of a finite set 
of periodic components, typically (for the lar- 
ynx) just one or two. Insofar as one component 
is dominant, we will directly observe close (or 
perfect) returns of the system to a state it 
occupied one, two, three, . . . periods earlier. 

Conversely, if the orbit is chaotic, then it will 
almost ahvays be found following some peri- 
odic orbit, but only temporarily.3 As the orbit 
continues, it will diverge from the periodic orbit 
(typically, its period will change, slowly at first), 
until we observe it under the “influence” of 
some other periodic orbit, perhaps of very dif- 
ferent period and shape. Periodic orbits can 
thus help to characterize a chaotic system. 
[Cvitanovic, 1991; Kesaraju and Noah, 19941 
We can use techniques that find periodic orbits 
in order to note changes in the system’s 
parameters (hence, in its attractor). 

4. FINDING PERIODIC ORBITS IN DATA 

Periodic orbits in experimental data may be 
detected by several methods. Conventional 
spectrograms, as it happens, are not well suited 
to this task. Our signals are not generally sinu- 
soidal. Spectrograms describe details of the 
remaining harmonic structure at the expense of 
long-range near-periodicity, an unfavorable 
trade-off here. Moreover, low power in a sub- 
harmonic will not be shown prominently in a 
spectrogram, yet just the existence of a subhar- 
monic (even one with no power) is often highly 
significant dynamically. 

One powerful but complicated alternative is 
to model the dynamical system locally, based on 
the collected data; the model may then be 
checked analytically for evidence of periodicity. 
[So et al., 19961 However, modeling the 
dynamics depends on the system following a 
single attractor, precisely the condition we are 
trying to verify. 

permanently closed state of the larynx - on grounds of 
boredom. 
3 “Any attractor of a hyperbolic chaotic system is 
densely filled with periodic orbits”; that is, every state is 
arbitrarily close to a periodic orbit (in fact, an infinite 
number of them). Although most chaotic systems are 
probably not “hyperbolic” (a term which will not oth- 
erwise concern us here), they are nearly so - and the 
difference only causes the longest-period, most convo- 
luted periodic orbits of the hyperbolic system to be 
missing from the actual one. The shorter and simpler 
periodic orbits are the most robust. 

It is much easier to form histograms of 
“recurrence times”: a count of the number of 
times that a signal value repeats (to within some 
tolerance) after some time interval, the recur- 
rence time, as a function of that interval. 
[Lathrop and Kostelich, 19891 This gives us an 
“inventory” of the periodic orbits that suffi- 
ciently large fractions of the signal pass through 
(or near). For present purposes, however, it 
has a critical limitation: It cannot tell us when 
the collection of periodic orbits (hence, the 
attractor) changed. Furthermore, brief episodes 
of periodicity may be poorly represented in the 
histogram. 

The “close-returns plot” [Mindlin and 
Gilmore, 19921 seems to provide almost what 
we need. The plot consists of dots at the time- 
versus-recurrence-time at which the signal val- 
ues agree to within some chosen accuracy (typi- 
cally a few percent in the work of Mindlin and 
Gilmore). That is, if the value at a time T 
agrees with that at T+p, then we plot a point at 
the coordinates CT, p>. If we see many points 
with the same value ofp then we conclude that 
there is evidence of periodicity with period p: 
At many choices of time T, the system has 
found itself in a state to which it appears to 
return an interval p later. (The count of the 
number of close returns for each choice of p, 
summed over all T, is just the recurrence-time 
histogram.) 

This is the basis of the technique explored 
here. 

5. INTERPRETATION OF PERIODICITY 
DIAGRAMS 

As the larynx opens and closes, the airflow 
rises and falls and the airflow (volume-velocity) 
signal passes repeatedly through a range of val- 
ues. These pictures display, moment by 
moment, the interval (recurrence time) after 
which the same airflow level repeats: If the air- 
flow levels at one instant and a certain interval 
later are nearly equal, the point corresponding 
to the instant (horizontal location) and interval 
(vertical location) is shown as bright; the closer 
the levels, the brighter the point; very dissimilar 
values are shown as dark. Thus, instead of an 
arbitrarily thresholded plot (the close-returns 
plot), we impose no threshold but display the 
closeness of the return as brightness. We refer 
to these images as “periodicity pictures” or 
“periodicity diagrams”. 



For a periodic system, all states repeat after 
some intervalp and all multiples ofp. Thus, for 
all times T, the corresponding picture will be 
bright at the recurrence time p, and at 2p, 3p, 
etc. : Periodic motion produces horizontal lines 
across a picture, uniformly “stacked” in 
height. This is shown most clearly on the 
“Loop” picture, Figure 1, generated from a 
sinusoid. The contrast with the “Noise” picture 
(Figure 2) generated from Gaussian white 
noise, is clear. 

The same insight applies to some other fea- 
tures of the pictures: If the larynx passes 
through a similar range of states twice (or 
more) per period - that is, through one cycle of 
values, then through another that is similar but 
not identical, before both repeat - then the 
picture will show this as vertically alternating 
bright and less-bright horizontal lines. Such 
subharmonic (“period-doubling” or “octave- 
jump”) behavior by the larynx is dynamically - 
and perhaps medically - significant. 

Such a picture shows immediately when the 
larynx changes period, or even becomes aperi- 
odic. If all periodicity stops, the region of hori- 
zontal lines has a triangular shape, with a 
boundary connecting the “top left” and “bottom 
right” of the region; this simply shows that ear- 
lier points (those to the left) have more repeti- 
tions (more lines vertically stacked) before the 
end. This is especially visible on the “Lore& 
pictures (Figures 2 and 3), derived from the 
well known Lorenz chaotic attractor. 

This diagram also shows what a chaotic sig- 
nal “looks like”: temporary, scattered, nearly 
horizontal bright lines (often stacked) that show 
the presence of periodic orbits which the system 
nearly follows for short intervals. The structure 
of the attractor itself forces similar states to 
experience similar evolutions, regardless of the 
interval before the system returns to a similar 
state. Thus, the signal contains long-range 
order even though it cannot (if it is chaotic) 
have long-range predictability. 

As it stands, this technique produces one 
strong artifact, even for a sinusoidal (scalar) 
signal. During any cycle, the signal reaches its 
maximum and minimum values only once per 
period. However, all intermediate values will 
occur at least twice per period, once when the 
signal is rising, once when falling. Conse- 
quently, we see an artifact, the steeply 
downward-sloping diagonal lines, that reflects 
this “false repetition” of the state. This artifact 

never forms uniformly stacked, horizontal line 
segments, the signature of periodicity, but it can 
obscure horizontal segments. 

There is a solution, drawn from conventional 
analysis of NLD data: Instead of using a scalar 
signal, measuring the closeness of return of a 
single value, we can use a vector of values - 
ideally, the complete system state itself Then, 
there cannot be false returns, because every 
close return of the vector must correspond to a 
close return of the state. Within broad limits, 
the expedient of using delayed copies of the 
signal itself serves just such a function. That is, 
we measure closeness not by a small difference 
between single values but by a simultaneously 
small difference between D consecutive values 
of the signal S: Symbolically, we compare 

G(7), S(T-l), . . . . S(T-D+l)> 
to 

<S(T+p), S(T-1 +p), . . . . S(T-D+ l+p)>, 

instead of merely S(Z) to S(T+p), before decid- 
ing how bright to show a point at <T,p> in the 
periodicity diagram. This new processing 
accounts for the difference between the first 
(D-1) and second (D=5) “Lore&’ pictures. 

Notice, incidentally, that there is no need to 
use the “correct” value of D: Too small a value 
will just produce occasional “false repetitions”, 
unlikely to confuse a search for stacked, hori- 
zontal segments. This contrasts with many 
other NLD algorithms (notably, estimating the 
Lyapunov exponents), which can fail com- 
pletely if D is even slightly too small. 

L.RJZSULTS 

All recordings are inverse-filtered to remove 
formants (oral-cavity resonances) and down- 
sampled to 2 kHz. In many of the recordings 
(of typical duration -1 set) that we have ana- 
lyzed so far, the larynx vibrates with nearly 
constant period throughout the interval. Such 
recordings generate diagrams consisting largely 
of stacked, straight lines. Coming from a voice- 
pathology database, however, many do not. In 
the “jgcO1” diagram, for example, we see evi- 
dence of period-doubling (700- 1000 samples) 
and even period-tripling (1300- 1600), with 
clear intervals when the larynx apparently 
follows a well-defined attractor. (In fact, the 
delay-space plots [not shown] of the corre- 
sponding sections are much “cleaner” than that 
of the whole.) In some cases, we apparently 
see chaos: a more-or-less uniform interval of 



short-term periodicity, reminiscent of some 
chaotic-attractor diagrams. The “joshl” dia- 
gram (near 700 samples, at 16 kHz), taken from 
a happy squawk by an infant, shows this 
pattern. 

7. CONCLUSION 

This method seems to give us a quick identi- 
fication of single-mode dynamics, precisely 
what we need for other analytical techniques to 
succeed. Moreover, it should apply equally 
well to signals from any dynamical system that 
may be subject to occasional unpredictable 
attractor changes. 
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jgcO1: Spasmodic dysphonia, hyperfunction, varacosity, edema 
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