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ABSTRACT 

The recursive median filter is used to improve the structure of the 
output of the key finding algorithm for establishing tonal contexts 
of musical patterns in a musical composition. This is 
subsequently incorporated into a system for recognition of 
musical patterns. Krumhansl’s key-finding algorithm is used as a 
basis. The sequence of maximum correlations that it outputs is 
smoothed with a cubic spline and is used to determine weights 
for perceptual and absolute pitch errors. Maximum correlations 
are used to create the assigned key sequence, which is processed 
by a recursive median filter. In most cases, the recursive median 
filter establishes the key more accurately than the standard 
median filter. Additionally, since the recursive median is 
idempotent, the key-finding output is guaranteed to be a root 
signal. 

INTRODUCTION 

Musical Pattern Recognition (MPR) is concerned with 
recognition or classification of musical patterns. Figure 2 shows a 
block diagram of the MPR system. It produces an error 
comprised of perceptual and absolute pitch and rhythm 
information between the target and scanned musical patterns. 
Thus, we view this process in a pattern recognition framework in 
the sense that we try to find the minimum distance from the set of 
scanned patterns to the target pattern. For a sequence 

[ 41942.“‘. 9.1 of n notes, we define a difference of pitch vector 

ij = [p,, p? ;-., p,,-,] , where p, = qi+, -4, , as the encoding of 

this sequence. The example used here is J. S. Bach’s Invention #8 
in F Major (right hand only) and the target pattern is the one 

shown in Figure 1. For this pattern, p = [7,-8,8,-5,4,1] . Because 

of perceptual invariance under transposition of pitch, the user is 
relieved of knowing the key of the actual musical pattern under 
this encoding. 

Figure 1 - Sample Target Pattern 

The absolute pitch error is defined as e, = I\p- pOII,, where 

p and PO represent the difference of pitch vectors of the scanned 

and target patterns respectively. The pitch error 
e, =A.e, +(1-A). e,, is a weighted combination of perceptual 

and absolute pitch errors, denoted by ep and e,, in the block 
diagram. Below, we define the perceptual pitch error ep and 
discuss the procedure for determining the weight h. 

PERCEPTUAL PITCH ERROR 

All intervals of equal size are not perceived as being equal when 
the tones are heard in tonal contexts [2]. For example, the notes B 
C played in succession heard in the context of C Major (for 
instance, after hearing a strong key-defining sequence of notes) 
would be perceived as being more natural and stable than the 
same two notes heard in the context of D Major. 

Since the ultimate goal is to recognize a target pattern memorized 
(possibly incorrectly) by a human being, it is important to 
consider certain principles of melody memorization and recall. 
For example, findings showed that “less stable elements tended to 
be poorly remembered and frequently confused with more stable 
elements.” Also, when an unstable element was introduced into a 
tonal sequence, “... the unstable element was itself poorly 
remembered” [3]. So, the occurrence of an unstable interval 
within a given tonal context (e.g. a melody ending in the tones 
C C# in the C major context) should be penalized more than a 
stable interval (e.g. B C in the C major context) since the unstable 
interval is less likely to have been memorized by the human user. 
These perceptual phenomena must be quantified for them to be 
useful in the classification of musical patterns. Such a 
quantification is provided by the relatedness ratings found by 
Krumhansl [3]. Essentially, a relatedness rating between tone q1 
and tone q2 ( q, + q2 ) is a measure of how well q2 follows q, in a 

given tonal context. The relatedness rating is a real number 
between 1 and 7 and is determined by experiments with musically 
trained listeners. Results are provided for both major and minor 
contexts. So, a relatedness rating between two different tones in 
any of 24 possible tonal contexts can be found due to invariance 
under transposition. 

The relatedness ratings described above are not defined when 
q, = q2 . However, it is very common to see two successive equal 

tones in music and we need to be able to assign a rating for them 
within the given tonal context. A study by Krumhansl and 
Kessler (1982) provides the answer. In it, the authors provide 



probe tone ratings for each of the I2 tones after a strong key- 
defining context is established. These ratings are also numbers 
from 1 to 7 and signify how well each probe tone “tits into” the 
context in a musical sense [4]. The experimentally measured 
probe tone ratings correlate quite strongly with the distribution of 
tones in tonal-harmonic music [3. p. 771. The probe tone ratings 
expose an ordering of stability on the set of tones and this 
ordering is refcrrcd to as a tonal hierarchy. Tonal contexts with 
similar tonal hierarchies are said to be close to one another. The 
probe tone ratings will be used as a relatedness rating when two 
consecutive tones are identical. For example, in the key of C 
major, the relatedness rating of C-C is equal to 6.35, which is just 
the probe tone rating of C in that context. Thus, we create new 
moditicd matrices of relatedness ratings whose diagonals are the 
probe tone ratings. We detine vectors 

ii = 1 a,,a,,-.. ,a,..,] and p= P [ PP,dL] 

present us with a most likely tonal context for a given musical 
pattern and this tonal context will be subsequently used for the 
relatedness rating vectors. Such an algorithm was developed by 
Krumhansl [3] and is based on the fact that “most stable pitch 
classes should occur most often” [5]. That is, tones that are 
sounded most frequently are the ones with high probe tone 
ratings, in a given tonal context (e.g. in a C major context, C, G, 
and E occur most often). We now make certain modifications to 
the algorithm in [3] and present a method for determining the 
parameter h. 

The set of the 12 probe tone ratings for a given key is referred to 
as the probe tone profile for that key. There are 24 such profiles 
(12 major and I2 minor). The iti profile vector is denoted by k;. 
The input to the algorithm is a IZelement vector i whose 
elements are total durations of the 12 tones in the musical pattern 
being scanned. Proceeding on the relationship between the 
number of tone occurrences and probe tone ratings, we correlate 
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Figure 2 - Block Diagram of MPR 

to be the vectors of relatedness ratings for the scanned and target 
patterns respectively, in the same tonal context. Finally, the 

perceptual pitch error is defined as ep = di - fi 
II II 

. 
1 

ESTABLISHING THE TONAL CONTEXT 

What exactly is the meaning of the tonal context of a pattern? If 
the pattern is of short length (I note, for example), then speaking 
about its tonal context is meaningless. Similarly, if the pattern is 
very long, it may consist of several tonal contexts and the 
transitions between them are called modulations. Finally, quite 
often, a tonal context is a matter of degree in that for a given 
pattern, there are several possible candidates for tonal context. 
So, just because the key-signature of a given composition 
happens to be F major, for example, it does not imply that the 

relatedness rating vectors 6 and p must be chosen for that 

particular tonal context, since modulations and shifting tonal 
centers are likely to occur. 

vector i with each of the 24 probe tone profile vectors and 

produce a 24-element vector of correlations, r = [q ,...,rB] . The 

highest correlation, r,,,,, is the one that corresponds to the most 
likely tonal context of the musical pattern being scanned. 

Suppose a musical composition that we wish to scan for the 
purpose of recognizing the target pattern consists of m notes and 
the target pattern itself consists of n notes (typically, m >> n ). 
We slide a window of length n across the sequence of m notes 
and for each window position, the key-finding algorithm outputs 
a key assignment. Thus, we generate a sequence 

t =[I,JZ’-,fm-“+,] of key assignments. 

We can see that each t, is a number between 1 and 24 (on a 
computer, it is convenient to use 0 to 23). See Figure 3 for an 
assigned key sequence. 

We thus see the need for a key-finding algorithm which will 



Figure 3 - Assigned Key Sequence 

As can be seen from that figure, there is quite a bit of variation in 
certain regions of the sequence. Moreover, we can see some 
impulses lasting only one note, which would seem to indicate that 
the tonal context changes for one note and then changes back - a 
very unlikely circumstance. This exposes a weakness of the key- 
finding algorithm [3] in that it may be sensitive to window length 
as well as the distribution of pitches within the window. 
Whatever the tonal context may be, it makes little sense to talk of 
two modulations occurring one note apart. Besides this, there are 
small areas of oscillations, especially those close to edges 
between two flat regions. These edges signify modulations and as 
the window slides across them, the key-finding algorithm is 
unable to determine a prevalent tonal context due to the presence 
of pitches that have high probe tone ratings in two different 
profiles. As a result, the assigned key values oscillate until a 
prevalent tonal context is established. Such small oscillations and 
impulses are undesirable, not only because they do not reflect our 
notions of modulations, but primarily because they affect the 
relatedness rating vectors, which inherently depend on the tonal 
context produced by the key-finding algorithm. Since the values 
of the assigned key sequence often appears arbitrary in the 
regions of oscillation, the perceptual pitch error is distorted in 
these regions. 

As a solution to the above problem, we employ the recursive 
median filter [6] with a large enough window to remove not only 
the impulses, but also the small regions of oscillations. The 
output of the recursive median filter is defined as 

y, = med(y, +... yi-,Ix,,.-.,x,+v) 

where the samples yimV ,.-., y,-, have already been computed 

during previous positions of the sliding window. It has been 
shown that the recursive median filter has a higher immunity to 
impulsive noise than the standard median filter. This makes it a 
better choice for our purpose than the standard median filter [7]. 
Moreover, the output of the recursive median is more correlated 
than the output of the standard median. This is due to the fact 
that y, is dependent on previous output values. This correlation in 

the output is advantageous since the tonal context at a particular 
position is more strongly dependent on previous values of the 
assigned key sequence than on future values. Finally, it is well 
known that the recursive median filter is idempotent. This 
property implies that any signal is reduced to a root signal after 
one pass; i.e., it is invariant to further passes of the same filter. 
This assures us that the assigned key sequence cannot be 
improved by more tilter passes. The window width of the 
recursive median filter needs to be chosen. If we are to employ 
the recursive median filter in order to remove oscillations in the 
regions of modulation, we must establish a high measure of tonal 
structure prior to and after the region of modulation. The amount 
of notes necessary to establish this, of course, depends on key 
membership of the notes as well as their relationship to the tonal 
center (i.e. stability). However, it has been shown that the 
maximum correlation, r,,,, is strongly correlated with the degree 
of tonal structure [S]. Therefore, if rmax is small, indicating a low 
degree of tonal structure, we should expect to use more notes to 
establish the latter. This implies that the window width of the 
recursive median filter should be inversely related to r,,,,,. Recall 
that for every window position of the key-finding algorithm, we 
have a maximum correlation, thus giving rise to the sequence 
r,,(i) of maximum correlations. We would like the window 
width, W, of the recursive median filter to be a function of the 
lowest of the maximum correlations. That is, 

W = f(min[rk(i)]) 
and one possible function is 

f(r,=[Jq 

where r1 is the next odd integer. Experiments show that values 

of k = I7 and v = 8 give good results for the recursive median 
filter. The parameter v simply controls the rate of growth of the 
window width with respect to the lowest maximum correlation. 

Figure 4 shows an assigned key sequence processed by a window 

width I9 recursive median filter, where min[rma(i)] = 0.46 . As 

can be seen, the impulses and oscillations are completely 
removed and yet the key assignments (and modulations) reflect 
what would be expected upon a visual inspection of the 
composition. 

WEIGHTING OF PERCEPTUAL ERRORS 

Now that we can successfully generate the assigned key sequence 
t, all that remains is the determination of parameter h. In the key- 
finding algorithm, the higher the maximum correlation, the more 
reliable is the key assignment. Consequently, the relatedness 

rating vectors Cr and fi become more suitable for use in the 

perceptual pitch error and hence, the perceptual error should get 
more weight. Figure 5 shows r,,,,,(i), the sequence of maximum 
correlations generated by the key-finding algorithm. 



Figure 4 - Recursive Median Filtered Assigned Key Sequence 
(WW = 19) 

Figure 5 - Sequence of Maximum Correlations 

Because of the sensitivity of the key-finding algorithm to pitch 
distribution within the window, it is common to see small-scale 
oscillations in the sequence r-(i). See, for example, the region 
around note 37 in Figure 5. Such oscillations are undesirable 
since they tend to imply that the confidence of the key-finding 
algorithm can change from high to low or vice versa in a matter 
of one note. Also, the perceptual pitch error becomes overly 
sporadic. The downward and upward trends, however, such as the 
one around note 52, should be preserved, since they indicate a 
genuine decrease of confidence of the key-finding algorithm in a 
given region. Because of these considerations, median filtering 
the sequence r,,,,,(i) is not appropriate as it would remove such 
trends, considering them to be impulses. So, in favor of reducing 
the jitter of the sequence of perceptual pitch errors e,,(i), 
preserving local trends, and removing small-scale oscillations, we 
apply a cubic smoothing spline to the sequence r,,,,,(i), thus 
creating a new sequence F-(i). It is precisely the values of 

T-(i) that determine our parameter h at every position of the 

window, giving rise to the sequence h(i) of the parameter values. 
Figure 6 shows the smoothed maximum correlation sequence. We 
choose to restrict the range of the sequence h(i) to 

uSA(i)lb, O<a<b<l 

for the following reasons. h(i) should never be allowed to reach a 
value of 1, since that would effectively ignore the absolute pitch 
error and put all the weight on the perceptual pitch error. 
Similarly, h(i) should not reach a value of 0 because the assigned 
key sequence t has been median filtered, thus making the 

relatedness rating vectors di and a suitable for use in the 

perceptual pitch error. Values of a = 0.25 and b = 0.5 have shown 
to be successful. Our choice of b in effect does not allow the 
perceptual error to “outweigh” the absolute error. To this end, we 
restrict the range of the parameter h by 

where 

A(i)=m.(F-(i)-maxf-(i)))+b 

b-u 

“’ max(;,,(i))-min(F-(i)) 

making h(i) just a scaled version F-(i). 

CONCLUSIONS 

We develop a method for establishing the tonal context of a 
musical pattern. This is a crucial element in the framework of 
musical pattern recognition. The recursive median filter is a 
good choice for improving the structure of the assigned key 
sequence. However, it would be worth exploring the possibility 
of using a variable-width filter, where the window width depends 
on the maximum correlation output by the key-finding algorithm. 
Moreover, a weighted median filter with weights determined by 
maximum correlations may be another solution. 

Figure 6 - Spline Smoothed Maximum Correlation Sequence 
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