
A GENERALIZATION OF THE TEAGER ALGORITHM 

Michael Moore and Sanjit Mitra 

Dept. of Electrical and Computer Engineering 
University of California, Santa Barbara 

Santa Barbara, CA 93106-9560 

ABSTRACT 

The 1-D Teager algorithm can be used to perform mean 
weighted highpass filtering with relatively few opera- 
tions. We propose a generalization of the Teager algo- 
rithm. The modified algorithm allows us to adjust the 
dependence of the highpass output on the local mean. 
The derivation and interpretation of the modified al- 

gorithm is presented. Finally, the response of several 
implementations to a test input is presented. 

1. INTRODUCTION 

In its general form, a 1-D quadratic digital Volterra 
filter is given by the 2-D convolution of the 1-D sample 
products z(ni) . z(nz) with a 2-D kernel hz(ni, 7~). 

y(n) = 5 5 hz(k1, b) . z(n - k$r(n - kz). 
kl=-ca k>=-cm 

Teager’s algorithm [l] is a 1-D Volterra filter defined 

by 
y(n) = x2(n) - z(n - 1). r(n + 1). (1) 

As discussed in [2], the output from Teager’s algorithm 
is approximately equal to 

Y(n) = ,4(4n> - 4n - 1)) + (4n) - 4n + l>)l (2) 

where ~1 = (z(n - 1) + z(n) + z(n + 1))/3. Thus the 
output of a Teager filter is approximately equal to a 
highpass filter response weighted by the local mean. 

In some applications, it is desireable to adjust the 

degree to which the highpass filter output depends on 
the average local intensity. This paper proposes a rel- 
atively simple generalization of the Teager filter to ad- 
just the weighting of the local mean in the filter output. 
The next section introduces the generalized algorithm 
and derives the mean approximation. Section three 
discusses an amplitude mapping interpretation of the 
algorithm. The final section provides some results for 
various filter implementations. 
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2. GENERALIZED TEAGER ALGORITHM 

The sensitivity of the 1-D Teager filter to the local 

mean can be adjusted by raising each term in eq. (1) 
to a fractional power. Specifically, 

y(n) = [+I)]~ - [x(n - 1). z(n + l)]% (3) 

Like the original function, this equation can be approxi- 
mated as a highpass function weighted by a local mean 
by applying the binomial theorem. Let p be the av- 

erage of the three input samples z(n - l), z(n), and 
z(n + 1) and 6, equal z(n) - ~1. Then the first term on 
the right hand side of eq. (3) becomes 

(4) 

assuming that the variations around the mean are small 
compared to the mean value. The second term can be 
approximated as 

[z(n - 1) . z(n + l)]A 

= [(p+6n-1)++6,+1)1* 

= [P’ + P(hI-1 + &+1) + &d*+11”; 

= 

ignoring second-order terms and once again assuming 
that variations are small relative to the mean. Sub- 

tracting eq. (5) f rom eq. (4) and replacing the b terms 
by adding or subtracting ,u as necessary, a final approx- 
imation can be found. Specifically, 

Y(n) = - ‘t-l [(z(n)-~(n-l))+(+)-++l))], (6) 



where, as before, ,U is the local mean. The weighting 
of the local mean can be adjusted by changing the pa- 
rameter m. 

For m < 2, the highpass output is multiplied by the 
local mean, raised to some power, and thus is weighted 

more heavily in high intensity regions. When m > 2, 
the highpass output is divided by the local mean, raised 
to some power, and thus is weighted more heavily in 
low intensity regions. For m = 2, the filter output does 
not depend on the local mean and approximates the 
output of a Laplacian filter. 

The approximation is valid as long as two conditions 
are met. First, the input, signal z(n) must be strictly 
greater than zero. Second, the sum of the two sur- 

rounding values should be within the following range: 

fz(n) < &(?I - 1) + z(n + 1)) < g(n) (7) 

with the best results when $(z(n-l)+z(n+l)) x z(n). 

3. INPUT MAPPING INTERPRETATION 

Note that eq. (6) can be rewritten as 

y(n) = ([+)]*)2 - [i+l - l)]A . [z(n + l)]k. (8) 

Therefore, the filter can be implemented by taking the 
mth root of each incoming sample and then filter us- 
ing a conventional Teager filter to produce the output 
sample. 

The premapped interpretation of the proposed al- 
gorithm is useful for explaining the effect of changing 
m on the output. Figure 1 is a plot of three mapping 
functions. The identity mapping corresponds to the 
Teager filter (m = 1). As m increases above one, the 

mapping function starts to bend out towards the upper 
left of the plot. The slope of the mapping function in- 
creases at low intensities and decreases at high intensi- 
ties. Thus small changes at low intensities are mapped 
to larger changes before filtering. When m = 2, the 
mapping exactly compensates for the Teager filter. As 
m increases above two, low intensity changes start to 
dominate the mapped input signal. 

Conversely, as m decreases below one, the map- 
ping function starts to bend down towards the lower 
right of the plot. The slope of the mapping function 
increases at high intensities and decreases at low in- 
tensities. Thus small changes at high intensities are 
mapped to larger changes before filtering. Since the 
Teager algorithm already amplifies high average inten- 
sity differences more than lower intensity differences, 
the high intensity changes start to dominate the out- 
put very quickly as m decreases below one. 

Figure 1: Mapping functions. 

By using the premapped interpretation of the al- 

gorithm, arbitrary mapping functions can be created. 
The function can be designed to specifically enhance 

regions of certain average intensity by increasing the 
slope of the mapping function in those intensity bands. 

However, the use of an arbitrary mapping function in- 
stead of an mth root mapping function makes the de- 
termination of an approximation like eq. (6) difficult. 

Figure 2 is a plot of a few arbitrary mapping func- 
tions. One function combines sections of two root plots 
to create a filter that enhances middle intensity regions 
more that either light or dark regions. The other two 
functions are linear approximations of the m = 0.5 and 
m = 2 root functions. 
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Figure 2: Mapping functions. 

The premapping function can also be used to make 
other useful alterations in the input signal. For exam- 
ple, the function can map zero input samples to nonzero 



values. As can be seen from eqs. (3) and (7), zeroes 
violate the conditions under which the approximation 

is valid and result in large filter responses regardless of 
the value of the local mean. By removing zero values, 
this effect can be minimized. 

As another example, the premapping function can 
be used to ensure that the algorithm output values are 

within a desired range. Let zmar be t,he maximum 
absolute value in the input range. The output of the 
Teager algorithm can vary within f~,,,‘. The out- 

put of the generalized Teager algorithm can range over 

ft nla2 2. However, by scaling the input a desired out- 
put range can be achieved. The scaling can be accom- 
plished by the mapping function. 

Premapping only depends on individual input val- 
ues. Therefore, the input mapping can be accomplished 
simply by using a lookup table indexed by the possi- 

ble input values. This implementation adds very little 
complexity to the normal Teager filter. 

4. RESPONSE TO TEST INPUT 

Figure 3 shows the output of the generalized Teager 
algorithm for three different values of m. The input 

signal consists of impulses of uniform height at three 
different base levels. The remaining plots compare the 
response of the algorithm to the input signal with m = 
a, m = 2, and m = 3. 
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Each output contains the response to both the im- 

pulses at each level and the steps between levels. Note 
that for m = 4, the response to each impulse increases 
as the level increases. For m = 2, the impulse response 

does not depend on the base level. For m = 3, the 
impulse response decreases as the level increases. 

Figure 3: Generalized Teager filter test input response. 

Figure 4 shows the output of a normal Teager fil- 
ter using premapped inputs. The same input signal as 
Figure 3 is used. The other plots correspond to the 
mapping functions shown in Figure 2. 

tion has a steep slope for middle intensities and shallow 
slopes at high and low intensities. This mapping should 
result in greater response to changes at middle inten- 
sities. This response is seen for function 3 in Figure 

4. 

Function 1 approximates the function z2 using two 
line segments. Premapping the inputs using the square 
function is equivalent to filtering with the generalized 
Teager algorithm with m = i. Indeed, the response to 
the function 1 in Figure 4 approximates the response 
to m = f in Figure 3. 

Function 2 approximates the function fi using two 
line segments. Premapping the inputs using the square 

root function is equivalent to filtering with the gener- 
alized Teager algorithm with m = 2. In Figure 4, the 
response to the inputs mapped by function 2 approx- 
imates the response to m = 2 in Figure 3, although 
there is a slight increase in response with intensity. 

Note that the response for the ‘highest intensity 
plateau using function 3 is larger than the response 
of the lowest intensity plateau. This response is a re- 
sult of the fact that the mapping function was sym- 
metric around an intensity of 0.5 but the basic Teager 
filter response was not. Therefore, although the high 
and low impulses were mapped to impulses of the same 
height, the Teager filter responded more strongly to the 
higher average intensity impulse. To equalize the high 
and low intensity responses: the premapping function 

would have to be flattened more at high intensities and 
steepened at low intensities. 

5. FURTHER APPLICATIONS 

Function 3 combines scaled versions of the square The generalized Teager algorithm allows us to change 
function and a square of xmar -xc. This mapping func- the weighting of the local mean in the output by adjust- 
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Figure 4: Premapped Teager filter test input response. 

ing a single parameter. The modified filt,er can be sim- 
ply implemented by premapping the input signal, for 
example by using a lookup table. Because t.he premap- 
ping is essentially independent of the Teager filter, the 
modified algorithm is applicable to other algorithms 
based on the Teager algorithm, such as 2-D Teager fil- 

ters [3]. Therefore, this technique can be applied to 
applications such as unsharp masking of images. This 
will allow the unsharp results to be adjusted for greater 
or lesser sensitivity in areas of certain average intensity. 
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