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ABSTRACT 

Nonlinearities in t,he amplifier and loudspeaker of 
hands-free speakerphones limit the performance of lin- 

ear adaptive acoustic echo cancellers, necessitating 

the use of nonlinear cancellation schemes. A non- 
linear acoustic echo canceller based on the Wiener- 
Hammerstein model structure of a cascade of linear, 
memoryless nonlinear, and linear elements is proposed. 

By modeling the true structure of the nonlinear system, 
the proposed canceller requires relatively few adap- 
tive parameters, offering significantly lower storage and 
computational requirements than more general nonlin- 
ear adaptive filtering techniques. Experimental results 
on measured loudspeaker signals indicate that, the pro- 
posed nonlinear echo canceller provides as much as an 

8.4 dB improvement in Echo Return Loss Enhancement 
(ERLE) over a linear Normalized LMS canceller with 
little additional computation. 

1. INTRODUCTION 

The performance of linear adaptive acoustic echo can- 
tellers is limited by nonlinearities in the signal path. 

Nonlinear cone suspension and uneven magnetic flux 
densities in the loudspeaker introduce nonlinear dis- 
tortion at large cone displacement levels. Addition- 
ally, at high volume settings, saturation effects may 
occur in the loudspeaker power amplifier, producing 
gross nonlinearities in the system that greatly impair 
the performance of linear acoustic echo csncellers. Be- 
cause these nonlinear phenomena are likely t.o appear in 
hands-free speakerphones, adaptive nonlinear schemes 
are required to achieve adequate echo cancellation. 

A number of methods have been proposed for non- 
linear echo cancellation. Volterra series based filt.ers 
[l] and neural networks [2] are two popular nonlinear 
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adaptive filter configurations. One of the primary dis- 

advantages of the Volterra filter is the large number of 
parameters it typically requires to characterize a non- 
linear system and the correspondingly large computa- 

tional load required to adapt such a large number of 
parameters. The number of parameters in a Volterra 
expansion goes up exponentially with the order of the 
nonlinearity. Since it is widely accepted that the non- 
linearities in loudspeaker systems are primarily of third 
and higher orders, adaptive Volterra filters arc not com- 
putationally feasible in this application. While signif- 
icant gains have been made recently in improving the 

efficiency of adaptive Volterra filters [3], these advances 
have been primarily in the use of second-order Volterra 
representations, limiting their usefulness in the hands- 
free environment. 

Acoustic echo cancellers using Time Delay Neural 
Networks (TDNNs) have been constructed [4]. They 
have the advantage that-unlike the Volterra struc- 

tures which are of a certain fixed order-TDNNs are 
general structures that do not require an explicit char- 
acterization of the nonlinearity by the user. Disad- 

vantages of TDNNs include their tendency to converge 
to local minima: slow convergence and great, computa- 
tional requirements. 

At least two hybrid nonlinear/linear echo cancellcrs 
have been proposed using neural networks to cancel 
the nonlinear component and linear Normalized LMS 

(NLMS) to cancel the long room echo response [4], [5]. 
Both structures have the disadvantage of still requiring 
that a significant proportion of their parameters be the 

computationally demanding neural network canceller. 
Additionally, the echo canceller structure described in 

(41 has th e si m g ‘fi cant shortcoming of requiring a second 

training signal from a second microphone placed near 
the loudspeaker. 

In this work we propose a nonlinear acoustic echo 
canceller (NLAEC) that is composed of a cascade of lin- 
ear and memoryless nonlinear elements. The proposed 



canceller, while similar in structure to that given in [4], 
does not require a second training signal and typically 

can be adapbed with far less computation for a given 

response length. Simulations and experimental results 
suggest that the structure presented here retains many 

of the performance advantages of the previous propos- 
als. 

2. PROPOSED STRUCTURE 

The nonlinear adaptive echo canceller we present here 

is constructed under the assumption that the nonlin- 
earity present in typical hands-free speakerphones is 
of a localized nature; i.e., the chain of components in 

the echo path made up of the D/A, power amplifier, 
loudspeaker, room response, microphone, amplifier and 
A/D can be modeled as the cascade of a linear filter, 
a memoryless, amplitudelimiting nonlinearity, and a 
second linear filter as shown in Figure 1. Measure 

ments of internal signals in actual loudspeaker devices 
indicate that this assumption is likely valid for most 
speakerphone systems. Consequently, we let our non- 
linear echo canceller have this same structure. Training 
this nonlinear canceller is the nonlinear system identi- 
fication problem shown in Figure 2. 

Figure 1: Typical speakerphone signal chain (top) and 

its ‘model (bottom). 
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Figure 2: Equivalent model of system and identification 

of that system with the NLAEC. 

This cascade of a linear filter, memoryless non- 

linearity and a second linear filter is referred to as 
a Wiener-Hammerstein model or G-model (“General 
model”) in the field of control theory. It is the cascade 
of a Wiener model (a linear filter followed by a memory- 

less nonlinearity) and a Hammerstein model (a memo- 
ryless nonlinearity followed by a linear filter) and repre- 
sents the logical generalization of these two component 

structures. While several proposals have been made re- 
garding the identification of Wiener and Hammerstein 

systems with general nonlinearity under various inpubs 
([6] ,[7], for example), most identification schemes for 
the cascade W’iener-Hammerstein model operate un- 
der the requirement that the input to the system be 
Gaussian white noise, an obviously unacceptable re- 
quirement for practical hands-free speakerphones [8] ! 
[9]. Below we derive a simple technique for identifying 
the parameters of a Wiener-Hammerstein system that 

does not impose such strict constraints on the system 
input and is thus more appropriate for the application 
of acoustic echo cancellation. 

3. PARAMETER UPDATE 

It is assumed that the saturator’s clipping amplitude is 

its only adaptable parameter so that the parameters re- 
quiring adaptation in the cascade system are the linear 
weights of the filters preceding and following the non- 
linearity (referred to here as the “prefilter” and “post- 

filter” for convenience), and this saturation level. All 
parameters are updated using a stochastic gradient al- 
gorithm minimizing the expected value of the squared 
error signal. 

The adaptive structure and signals internal to the 
structure are shown in Figure 3. For known input se- 

quence z(n) and desired sequence d(n), at time k we 
have 

NW-1 

a(k) = c wrc(!)x(k -l) 
e=o 

0) 

i(k) = P-a (s(k)) (2) 
Nh-1 

y(k) = c hk(m)i(k -m) 
m=O 

e(k) = d(k) - y(k) (4) 

where wk(i) are the prefilter taps at time k, hk(i) are 

the postfilter taps at time k, and pyk(.) is the ampli- 
tude clipping nonlinear function with adaptive satura- 
tion level Tk at time k. 

d(k) 

x(k) 
W 

Figure 3: Relevant signals in the nonlinear adaptive 

structure. 

Updating the nonlinear model parameters us- 
ing stochastic gradient optimization to minimize 



~CW2~ d an invoking the assumption that the adap- 
tive parameters are slowly varying produces the param- 
eter update equations 

wk+l@) = wk(t) + 

NW-1 

2w(k) c 4k - C - n)hdn)Pjy, (s(k - n))(5) 
n=O 

for !=O,...,N,-1 

Nh-1 

%+I = % + 2w(k) m)-. &p,, (S(k - m)) (6) 

hk+l(m) = hk(m) + 2pe(k)i(k - m) 

for m=O,...,Nh-1 

(7) 

Note that the update of the postfilter coefficients 
h(i) is simply the commonly used LMS update for a lin- 
ear adaptive filter. In an attempt to increase the rate of 
convergence, a Normalized LMS (NLMS) update may 
be used for these taps. From Equations (5)-(7) it is 
clear that updating the prefilter requires O(Ni) oper- 
ations, while the remainder of the algorithm requires 

only O(Nh) operations. However, since the update 

equations for the w(i) are decoupled, they may be eas- 
ily updated in a round-robin manner, one tap per data 
point, if a lower rate of convergence can be tolerated. In 
practice this is rarely required because, as is discussed 
below, the prefilter for acoustic echo cancellation ap- 

plications is typically very short, and is certainly much 
shorter than the postfilter so that a full-rate updat,e of 
the prefilter taps is usually feasible. 

In t,his work, two forms of the clipping nonlinearity 

are, proposed, a hard clipping saturator and a soft clip- 
ping nonlinearity. Both were designed to exhibit a slope 
of one at zero input so as to produce an input/output 
relation with unity gain for small signals. Also, both 

are antisymmetric and have a maximum output ampli- 
tude bhat, is denoted by Tk at time k. The hard clipping 
saturation is given by the piecewise linear function 

{ 

-7k v < -“jk 

PYk (II) = ‘II -7k 5 71 5 Yk 
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and the soft clipping saturation by 

(8) 

p%(v) = ?J& (9) 

in which alpha is a positive, nonadapting parameter 
that determines the softness or sharpness of the non- 
linearity. Plots of these saturating functions are given 
in Figure 4. 
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Figure 4: (a) Hard clipping nonlinearity. (b) Soft clip- 

ping saturator with Q = 2. 

, 4. INITIALIZATION 

Simulations indicate that, as presented above, the 
squared error of the adaptive system does not always 
converge to the global minimum under all initializa- 
tions. Instead, local minima in the error surface are 
found. However, for the specific application of nonlin- 
ear echo cancellation in hands-free speakerphones, an 

initialization technique that experimentally performs 
very well has been developed. 

Assuming that the localized nonlinearity in a hands- 

free speakerphone is present in either the power ampli- 
fier or the speaker itself, we see from Figure 1 that the 

prefilter response in a nonlinear echo canceller corre- 

sponds primarily to the cascaded response of the D/A, 
power amplifier, and possibly part of the speaker re- 
sponse. A reasonable assumption for this aggrega.te re- 
sponse is that it is generally bandpass with a wide pass- 
band (relative to the sampling rate). Under these cir- 
cumstances, the bulk of the prefilter impulse response 
energy is well concent,rated in time. Similarly, the post- 
filter corresponds to the room impulse response and 

microphone-related input components so we expect the 
postfilter to be significantly longer than the prefilter. 

Given this knowledge of prefilter and postfilter char- 
acteristics, a sensible initialization of these filters may 
be made that will ensure convergence in typical applica- 
tions. Since the prefilter should converge to a response 
that is well concentrated in time, it is likely that it can 

be well approximated by a scaled and shifted unit pulse. 
After initializing the prefilter to a shifted unit pulse lo- 
cated at the “center” of the available prefilter taps, 
an initialization for the postfilter is obtained by tem- 
porarily removing the nonlinearity and adapting only 

the postfilter as in Equation (7), performing a linear 
identification. Simultaneous adaptation of all compo- 
nents in the nonlinear system by iterative evaluat,ion of 
Equations (5)-(7) begins after this initialization of the 
postfilter fails to further decrease the error energy. 



5. SIMULATION RESULTS 

A commonly used measure of echo canceller perfor- 
mance is Echo Return Loss Enhancement (ERLE) de- 

fined by 

ERLE (dB) = lOlog,, 

where r-$ and u,” are the variances of the desired and 
error signals, d(k) and e(k), shown in Figure 3. 

Simulations were conducted to test the initialization 
technique and compare the performance of the NLAEC 

to that of the commonly used NLMS echo canceller. 
The system to be identified was a cascade of a length-11 
bandpass prefilter, a hard clipping saturation nonlin- 

earity, and a random, length-21 postfilter. The NLAEC 
used to identify the system contained 15 prefilter taps, 
43 postfilter taps and used a hard clipping saturator 
with adjustable saturation level. For comparison, a lin- 
ear NLMS adaptive filter with 58 taps was also applied. 

The system to be identified was excited with Gaussian 
white noise, both the NLAEC and NLMS cancellers 
were allowed to adapt until converged, and then the 

converged ERLE was recorded. Measurements were 
made with various saturation thresholds in the model 
system, from severe clipping at twice the standard devi- 
ation of the model prefilter output, to minimal clipping 

at four times the prefilter output standard deviation. 
The measured ER.LE for the NLAEC and NLMS aver- 
aged over 10 experiments is shown in Figure 5. 
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Figure 5: ERLE of NLAEC and NLMS at different 

levels of saturation. 

The results shown in Figure 5 show that for all 
but the mildest clipping, the NLAEC outperforms the 
NLMS echo canceller. Generally, as the severity of the 
nonlinearity increases, the performance advantage of 
the nonlinear canceller increases as one would expect. 

At the most severe clipping levels tested, the ERLE 
of the proposed structure was over 6 dB higher than 
that of the linear canceller. At the mildest clipping 
levels in Figure 5, levels which correspond to an almost 
negligible amount of nonlinear distortion, the NLAEC 
performs only marginally worse than NLMS. 

6. EXPERIMENTAL RESULTS 

A very inexpensive pair of amplified loudspeakers of 
the type commonly used in multimedia PCs wss pur- 
chased for experiments investigat.ing the applicability 
of the proposed nonlinear canceller in PC hands-free 

telephony applications. In a typical laboratory environ- 
ment, recordings were made of a single speaker playing 
at high volume a recording of synthesized vowels that 
varied in fundamental frequency and amplitude. Mea- 
surements of the voltage at the loudspeaker terminals 
indicated that over the range of output volumes this 

powered speaker could produce, the loudspeaker itself 
was essentially linear. However, at high volume levels, 

the power amplifier appeared to introduce a hardlimit- 
ing amplitude nonlinearity. Thus, the saturation non- 

linearity chosen in the NLAEC was the hard clipping 
saturator shown in Figure 4a. 

Both the NLAEC (with initialization) and NLMS 
algorithms were applied to the data from the synthetic 
vowel recordings and each algorithm was permitt,ed to 
run until converged. The NLAEC prefilter contained 
30 taps and the postfilter contained 200 taps. The 
NLMS adaptive filter trained for comparison used 230 
taps. When converged, the proposed nonlinear echo 
canceller achieved an ERLE of 19.5 dB, significantly 
better than the NLMS canceller which produced an 
ERLE of 11.1 dB. 

7. SUMMARY 

Nonlinearities severely limit the performance of acous- 
tic echo cancellers in hands-free speakerphones and sug- 
gest the use of nonlinear adaptive techniques. A non- 
linear echo canceller based on the Wiener-Hammerstein 
model structure of a cascade of linear, memoryless non- 
linear, and linear elements was introduced and an al- 
gorithm for its adaptation was proposed. Although the 
adaptive technique proposed is not guaranteed to con- 

verge to produce the global minimum mean squared er- 
ror, a technique for the initialization of the adaptive pa- 
rameters was suggested that experimentally performs 
very well in this echo cancellation problem. 

Simulations and experimental data were presented 
that indicate that over a wide range of saturation con- 
ditions the proposed NLAEC structure can perform 



significantly better than linear cancellers. While can- 
celling an appreciable amount of the nonlinear echo 

components, the proposed system can be updated with 
an algorithm that has a computational cost that is little 
more than the LMS algorithm. With its low demands 

upon computation and coefficient storage resources, it 
offers a great savings over Volterra and neural-network 
echo cancellers and is practical for embedded real-time 

application. 
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