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ABSTRACT 

In this paper a nonlinear signal decomposition for image 
compression is presented. It uses a pyramid multiresolution 
scheme which is similar to that found using wavelet sub- 
band decompositions. The self-similarity across the differ- 
ent scales of the nonlinear signal decomposition is then ex- 
ploited by the SPIHT algorithm which is modified to match 
the new signal decomposition. The nonlinear decomposition 
produces better edge preserving and less blocking artifacts in 
the reconstructed image than traditional wavelet decomposi- 
tion, specially at very low bit rates. 

INTRODUCTION 

Recently, numerous image codecs which exploit the self- 
similarity of the wavelet transform among the different s- 
cales have been introduced. The embedded zero-tree codec 
introduced by Shapiro in 1993 [l] and the Set Partitioning 
in Hierarchical Trees (SPIHT) [2] are examples of this class 
of codecs. Among all coding methods, these codecs have 
the best performance for low bit rate compression (i.e. 0.5 
- 0.2 bpp). For very low bit rate compression (below 0.2 bp- 
p), however, these coding methods produce severe artifacts 
leading to unacceptable performance. 

‘In this paper we show that nonlinear signal decompo- 
sitions are well-suited for zero-tree like coding and that 
codecs utilizing nonlinear signal decomposition perform sig- 
nificantly better than traditional zero-tree like codecs using 
wavelet transforms, particularly at very low bit rates. 

Our codec borrows its structure from the SPIHT algo- 
rithm but uses an order statistic signal decomposition in- 
stead of the traditional wavelet signal decomposition. Con- 
sequently, the algorithm must be modified such that differ- 
ent subbands must be weighted according t.o their influence 
on the reconstruction. The order in which the coefficients 
are encoded not only depends on their magnitude (as in the 
wavelet case) but also of their position within the different 
subbands. 

The nonlinear filter bank used in the decomposition is 
based on the so called median afline filter [3] which can 
be tuned to the desired level of nonlinearity ranging from a 

1 This research has been supported through collaborative 
participation in the Advanced Telecommunications/Information 
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by the U.S. Army Research Laboratory under the Federated Lab- 
oratory Program, Cooperative Agreement DAALOl-96-2-0002. 

standard linear FIR filter to a median filter. We profit from 
the best attributes of both filtering methods in a tunable 
fashion. Thus the preservation of edges and details which 
are the best characteristics of the median filter as well as 
the effectiveness of the linear filter in smooth image regions 
can be exploited jointly. 

NONLINEAR DECOMPOSITION 

Let p be the set of pixels that defines the original image 
such that p;,j represents the value of the element (pixel) of 
the original image in the coordinate (i, j). We define the 
polyphase components of the original image as the subsets 
of pixels zoo, x01, 210, and 211 such that 

x00 = {zooi,, = p;,j for all i-even and j-even} 

x01 = {zcii,, = pi,j for all i-even and j-odd} 

X10 = {xi~~,~ = pi,j for all i-odd and j-even} 

Xl1 = {xi~~,~ = pi,j for all i-odd and j-odd} 

As shown in Fig. 1, the nonlinear decomposition is ob- 
tained as follows. The original image, p, is split into it- 
s polyphase components x00, x01, x10, and xii as above. 
Next, the “low-low” subband Ye0 is simply COO, a subsam- 
pled version of t.he original image. The x00 polyphase is 
used to predict the xii polyphase, thus, the prediction er- 
ror defines the “high-high” subband, i.e. Yii = xii - 211, 
where iii = F(xec) is the predicted value of xii from x00 
samples. Both components x00 and xii are used to predict 
the x01 and xi0 components and the difference between the 
real and predicted values form the “high-low” and “low- 
high” subbands respectively [4]. Fig. 2 shows graphically 
the nonlinear decomposition. 

The structure shown in Fig. 1 is similar to that present- 
ed in [5, 61, hence, itself guarantees perfect reconstruction 
from the subband coefficients regardless of the filter used. 
Thus the original polyphase components as function of the 
subbands are given by: 

x00 = Yoo 

x11 = Yll +F(xoo) 

X01 = YOI + 7(x00, x11) 

X10 = YlO + .T(x00,x11) 

It is clear that the choice of the filter 7 is very impor- 
tant. In our simulations we used the median affine filter 
[3] since it can be suitably adapted to the desired level of 
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Figure 1: Nonlinear filter decomposition. 

nonlinearity ranging from a standard linear FIR to a medi- 
an filter. Thus, it is possible to select the most appropriate 
filter so that it yields the best energy compaction in the de- 
composition. The output of the median affine filter is given 
by: 

211 = 
Ci,jcw 9 Zooi’j~“med) Wi,jXOO~,j 

( 
(1) 

where W is the observation window which contains the sam- 
ples used to get the prediction of xii, z,,& is the sample 
median and wi,j are the prediction weights. The function 
g(.) is called the affine function and its main objective is to 
give a measure of the proximity of each sample in the ob- 
servation window (W) to the sample median. Thus, those 
samples that are close to the sample median are assigned a 
high affinity (s l), whereas, those that arc distant to the 
sample median are assigned a low affinity (z 0). The affine 
function is constrained to be unimodal and to have a msx- 
imum value of one at the origin. There are many function- 
s that satisfy these requirements, one of them which was 
used in our simulations is the Gaussian affinity function 

exp( e), whe re y is a tunning parameter which deter- 
mines the desired level of linearity. Note that as y + +oo 
the median affine predictor behaves like a linear predictor 
and as y + 0 its behavior is like a median predictor. There- 
fore, in a tunable fashion, it is possible to exploit the best 
qualities of bot.h filtering met.hods. 

The recursion of the nonlinear filter bank over the “low- 
low” subband, YOO, generates a pyramid like wavelet decom- 
position. In Fig. 3, we show a three level subband decom- 
position found using nonlinear filter bank and wavelet. 

MODIFIED SPIHT 

Once the decomposition is obtained, the resultant coef- 
ficients are passed through the SPIHT codec. This codec 
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Figure 2: In Fig. 2a the polyphase components x00, x01, 
x10, xii are shown. In Fig. 2b the x00 polyphase (black 
dots) are used to predict the xii polyphase (grey squares) 
of Fig. 2c. In Fig. 2d the tee and xii polyphases are used 
to predict the x01 (grey rhombus) and xi0 (white squares) 
polyphases. 

is designed to exploit: (1) Energy compaction, and (2) The 
self-similarity between subbands such that the coefficients 
are expected to be magnitude ordered if we move downward 
in the subband decomposition following the same spatial 
orientation [2]. 

This algorithm, however, is originally based on the wavelet 
decomposition, hence, the importance in the encoding of the 
coefficients is determined only by the magnitude of the co- 
efficients. This follows as a result that the Euclidean norm 
is invariant to unitary transformations. Since the nonlinear 
transforms used here, are not unitary, the error norm in the 
transformed space will not be necessarily the same in the re- 
constructed space. Hence, the magnitude of the coefficients 
as well as their position in the pyramid decomposition must 
be taken into account in the coding stage. For this reason, 
the SPIHT codec must be modified according to the char- 
acteristics of the nonlinear decomposition such that those 
coefficients that yield the largest distortion reduction are 
given more priority in the encoding stage. 

The structure of the proposed nonlinear decomposition 
is such that an error in a coefficient in the highest level of 
the pyramid will have more influence in the reconstructed 
image than an error of equal and possible larger amplitude 
in any other level. Moreover, at the same level, except in 
the highest level, the “high-high” subband which is used to 
predict the x01 and x10 polyphase components of the next 
level, introduces more distortion than that introduced by 
an error in the corresponding “high-low” and “low-high” 
subbands at the same decomposition level. Thus, those 
subbands that are more important in the reconstruction, as 
related to their influence in reducing the distortion of the 
reconstructed image are given more priority. As a measure 
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Figure 3: Three level subband decompositions. 

of distortion we use the peak signal-to-noise ratio PSNR 
defined as: 

dB, (2) 

where MSE defines the mean square error between the o- 
riginal and reconstructed images given by: 

i=l j=l 
with M and N as the size of the original image. 

In order to minimize this error a certain rule of impor- 
tance should be established in the encoding of each sub- 
band. One way to define this importance is to assign to 
each subband, a weight according to its influence in the 
reconstruction. 

Table 1: Propagation error for a three level signal decom- 
position and weighted values for each subband. 

To find such weights, let Ax!? be an error in a coef- 
ficient in the (1, m) subband at the nth level of the decom- 
position, where (1, m) E {(O,O), (0, l), (l,O), (1,l)) repre- 
senting the low-low, high-low, low-high and high-high sub- 
bands respectively, the decomposition level is indexed as 
n= 1,2,3,... n’ with n’ as the last level of the decomposi- 
tion. 

The error in a reconstructed pixel that is affected by 
AY$z can be expressed as: 

Api,j = pi,j - &,j = ki,j ATi: (4) 

where pi,j and &,j are the original and reconstructed pix- 
els respectively, and ki,j is a parameter that measures the 
influence of the AY$z on the pixel pi,j, given by: 

Of course, this parameter depends on the proximity of 
the pixel pi,j to the error coefficient Au,‘:. Hence, for t,hose 

id pixels distant from the location of AY,,, , and thereof not 
affected, this parameter is equal to zero. 

When there is only one error, AY$z, the MSE given by 
( 3) can be expressed as a function of these parameters ki,j 
SS: 

MSE = (AI;?)" N M 
Mk ~~kfsj. (6) 

i=l j=l 
The term 

PEI’~ = C C k,?,j (7) 

is called the propagation error of the subband (1, m) at the 
nth level of the decomposition, and S is the set of pixels that 
are affected by the error Au,‘?. This propagation error is 
identical for all the coefficients in a same subband and level, 
except possibly for t.he coefficients on the boundary between 
consecutive subbands. 

Table 1 shows the propagation error found for a three 
level signal decomposition using a mean filter with 2 x 2 
window size. From this table, one can see for example that 



the same distortion than that produced bv a coefficient er- 

Figure 4: Original image. 256 x 256 pixels. 8 bits per pixel. 

at level-3, the low-low subband is more important than the 
high-high, but the high-high is more important than the 
low-high and high-low. 

As an example of how the PE,!; values were deter- 
mined, consider a coefficient error in the high-high subband 
of the first decomposition level (Au,(:)). According to the 

. . 
decomposition, the Y/t’ is used to determined the x01 and 
zie components of the original image, hence, an error in any 
coefficient (i, j) in Y,‘:’ will affect only the reconstruction 
of its four pixels closest to it. For any of these neighboring 
pixels we have: 

Pi ,j = Y&y&j) + 1/4[Yd,‘)(i,j) + 

Yd,‘)(i + 1,j) + Yi?(i,j) + Y/iQj + l)] 

.ki,j = 
aPi j A = l/4. 

au,(:) 

Using PE,(z = C Ci,jes k$, 

PE!;) = (l/4)* + (l/4)* + (l/4)* + (l/4)* + (l)* = 1.25 

The term (l)* includes the error Y,‘:’ itself. In the same 

way an error in either Y$) or Y/i) does not affect any other 

prxels that itself, hence, PE,, (l) = p@ = 1. 
In order to find the weights that must be assigned to 

each subband, let AY::” be a coefficient error in the low- 
low subband and Au,;: be a coefficient error in any other 
subband. These two errors produce the same distortion 
(same MSE) if the magnitudes of the errors are related as 
follows: 

03) 
the MSE is minimized, where PE,(z is the propagation er- 
ror of an error in the subband (1, A) at the nth level of the 

decomposition and PE$‘) is the propagation error of an 
error in the low-low subband. Table 1 shows the different where PEA:‘) > PE,(z for all 1, m and n (I, m # 0,O and n # 

n’). Thus, a coefficient error of magnitude AY,$,) produces weights found for a three level decomposition. 

ror in the low-low subband of magnitude 

(b) 

Figure 5: Compression rate = O.lbpp. (a) Standard SPIHT. 
(b) Nonlinear SPIHT. 

This suggests that if each subband (I, m) at the 72th level 
of the decomposition is weighted by: 

(9) 



Thus, before the transformed coefficients are encoded, 
these are weighted according to ( 9) at the different levels, 

i e c! = W/,nm)ci,j where ci,j are the transform coefficients . . r,j 
in the subband (I,m). Of course, the nonlinear signal de- 
composition must guaranty perfect reconstruction when no 
compression is done, hence, an inverse process is applied 
after the decoding operation. After decoding, the received 
coefficients are then weighted so as to emphasize the high 
frequency components. This same procedure was used with 
the standard SPIHT codec but the results were not favor- 
able and thus it was not used in that case. 

Although the above analysis was done when 7 is con- 
strained to be a linear filter, the weighting structure pro- 
duces good results even when the filter introduces nonlin- 
earities. 

(b) 

Figure 6: Compression rate = 0.15bpp. (a) Standard SPI- 
HT. (b) Nonlinear SPIHT. 

SIMULATIONS 

In order to evaluate the proposed approach, we compare 
the results obtained with the new algorithm (nonlinear SPI- 
HT) with those obtained by the standard SPIHT algorithm. 
Fig. 4 shows the original test image which was compressed 
to 0.1 and 0.15 bit per pixel (bpp). The coded images at 
0.1 bpp and .15 bpp are shown in Figs. 5 and 6 respectively. 
The tunning parameter, (r), of the median affine filter was 
fixed to 1 which yields in general, good performance. 

As shown in Figs. 5 and 6 the ringing artifacts around 
edges with the standard SPIHT algorithm are very disturb- 
ing, particularly at compression rates 0.1 bpp. These ar- 
tifacts are not present with the nonlinear SPIHT coded, 
moreover, the edges are better defined in the nonlinear SPI- 
HT than in the standard SPIHT. However, the standard 
SPIHT yields a better performance in the PSNR measure 
sense than the nonlinear SPIHT does (the PSNR in the s- 
tandard SPIHT is approximately 1.5 dB larger than that 
in the Nonlinear case). We believe that at very low bit 
rates the most appropriate measure of performance is sub- 
jective and, in general, MSE based measures are not good 
indicators of image quality. 

CONCLUSIONS 

We have presented a nonlinear signal decomposition 
which uses a recursive nonlinear filter banks to get a pyra- 
mid decomposition similar to that found using wavelet. The 
self-similarity across different scales is then exploited by the 
SPIHT algorithm which was suitably modified according to 
the nonlinear decomposition yielded better image compres- 
sion results at low bit rates. 
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