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ABSTRACT 

We investigate the use of Iterated Function Systems (IFS) 
for modeling and compressing 2 dimensional fractal images 
by exploring solutions of the Inverse IFS Problem: Given 
a fractal image we are looking for parameters in 24 dimen- 
sions for a small set of affine maps and their associated 
probabilities which c0nstitut.e the IFS. Upon iteration the 
IFS solution produces an attractor with the characteristics 
which describe the image under consideration. We use a Ge- 
netic Algorithm (GA) and a Neural Network (NN) scheme 
which simulates the IFS. A sample cross section of the error 
hypersurface within the “Mandelbrot set” in the parameter 
space of a 3-map IFS family is shown. The solution ob- 
tained with the GA, in the 18 or 24 dimensional parameter 
space, meet the desired specifications which describe the 
original image to within the given discretization. Applica- 
tions of the inverse problem are aimed towards prediction 
of second order phase transitions, where scale invariance 
and power laws are encountered, as well as towards image 
compression. 

1. INTRODUCTION 

An abundance of natural systems exhibit complex behav- 
ior ,[l], [2] which often results in the formation of spatial 
or even temporal structures which cannot be described by 
static Euclidean geometry. Examples are objects whose 
fragmentation is preserved at all scales such that a small 
piece of them is structurally similar to the whole. Trees, 
clouds, fractures, and coastlines are among objects depict- 
ing spatial scale-free structure. Mandelbrot named these 
objects, whose dimension is most often fractional rather 
than integral, Fmctals, and the geometry necessary for their 
description Fractal Geometry [3]. As he stated [4], Fkactal 
geometry is a workable new middle ground between the ex- 
cessive geometm’c order of Euclid and the geometric chaos of 
general mathematics. During critical phenomena, in addi- 
tion to scale invariance, systems, however diverse from each 
other, also incorporate temporal scale-free behavior, while 
their macroscopic quantities exhibit power laws. Scale in- 
variance and power laws are intrinsic to fractal geometry. 
The underlying mechanism responsible for such pattern for- 
mation is governed by nonlinear dynamics. Consequently, 
fractals are attractors of dynamical systems. 
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Due to the fact that there exist physically dissimilar 
systems which have similar properties, especially in crit- 
ical phenomena, in order to characterize and study their 
phase space attractors, we are prompted to construct arti- 
ficial models whose attractors belong in the same category. 
Such modeling may be applicable to prediction of continu- 
ous phase transitions. The model is therefore a mathemat- 
ical tool which is a dynamical system in itself. An Iterated 
Function System (denoted as IFS) is an example of such a 
tool. As sources of deterministic fractals, IFSs were exten- 
sively studied by Michael Barnsley and his colleagues, and 
were used for image compression [5], [6]. 

An Iterated Function System consists of a specified num- 
ber of appropriately chosen functions or transformations 
(linear or nonlinear) which as set operate iteratively on 
their own output in a metric space. An IFS with prob- 
abilities may be constructed when a probability-weight is 
associated with each of the functions. The IFS produces 
an orbit which converges within an object of fractal dimen- 
sion. The functions used in this work are contractive affine 
maps acting in the Euclidean plane. A probability is asso- 
ciated with each of them. The object produced, namely the 
attractor of the prescribed IFS, is an image whose fractal 
density is distributed on top of an underlying fractal shape, 
i.e., its support. 

In order to use IFS for modeling, the solution to the Zn- 
verse Problem for IFS becomes the subject of attention, for 
the answer to the following question is given by it. Given 
some fractal pattern corresponding to a complex physical 
system, can we find a simple IFS whose attractor incorpo- 
rates properties and characteristics of the pattern in ques- 
tion? For this purpose, the inverse problem for IFS may be 
defined as finding parameters for a small number of affine 
maps and their associated probabilities. 

1.1. The IFS 

All terms, definitions, and theorems concerning Iterated 
Function Systems, used herein, may be found in the book 
Fractals Everywhere by Barnsley [5]. As mentioned earlier, 
our IFS consists of N affine transformations operating on 
shapes in the Euclidean plane. Under affine transforma- 
tions, several properties of shapes are preserved: straight 
lines remain straight lines; parallel lines remain parallel; 
the ratio of volumes, areas and line segments is preserved. 
Thus, ellipses transform into ellipses, parabolas into parabe 
las, etc. In R2, an affine map is representable by an 2 x 2 



matrix together with a shift: 

In our test case, the image to be modeled is a discretized 
attractor p* of an IFS. p* represents the density of visited 
points on its support A’ (all the raised pixels). Using 
Barnsley’s collage theorem we assume that we can find at 
least one IFS of contractive affine maps whose attractor A is 
close in Hausdorff distance to A’, and whose density distri- 
bution p (coded in color) is close in Hutchinson distance to 

P * ‘. The density of points on the attractor is distributed 
proportionally to the probability associated with each affine 
map [5]. The probabilities are adjusted implicitly to be pro- 
portional to the normalized areas of their associated trans- 
formation. 

We explore solutions to the IFS inverse problem with 
the use of a Genetic Algorithm (GA), in the forzuard item- 
tion method as defined in [5]. Forward iteration guarantees 
that every iteration on the attractor with the IFS which 
generated it, will map it onto itself with probability 1. A 
significant number of iterations (an average of 20 for images 
embedded in 128x128 grid) is necessary for determining 
whether a chosen parameter set, actually causes the orbit of 
the IFS to converge on an attractor whose Hausdorff dis- 
tance from ,4* is sufficiently small. 

We are searching for solutions in the parameter space of 
the IFS, the hypercube [-1, +116”, where ea.ch point repre- 
sents an IFS attractor. We are interest,ed in the neighbor- 
hood of the boundary of the Mandelbrot set (that is, the 
set of stable periodic points of the dynamical system) asso- 
ciated with our parametrized IFS family. The test images, 
embedded in the unit square, covered two categories of IFS 
attractors: 

1. Just Touching, with test image the “fern” attractor 
of Figure 4(A). 

2. Minimally Overlapping, with test image the “leaf’ 
attractor of Figure 5(A). 

1.2. The GA 

We chose to use a GA in order to search for the 6N affine 
parameters of an IFS whose attractor is an acceptable so- 
lution, for the following reasons: First, it has been ob- 
served [7] that GAS consistently outperform other meth- 
ods of stochastic search on problems involving discontin- 
uous, noisy, high-dimensional, and multimodal objective 
functions, as is the case of the Inverse IFS problem. This is 
demonstrated in Figure 1: A projection of the Mandelbrot 
set in the 18-D parameter space of the 3-map IFS fam- 
ily is plotted (top). The projection was purposefully cho- 
sen to partly cover the niche containing the point “fern” 
(white regions). In the bottom section? the error landscape 
within the inner rectangle is plotted. Here, however, we ob- 
serve that this projectional slice misses the “fern” minimum 
(0.067, 0.51) (due to the introduced randomness) because 
the largest peak is not located exactly on it. We conclude 

‘The Hausdorff distance measures “nearness” between shapes 
of two images. The Hutchinson distance measures “nearness” 
between density distributions residing on top of those shapes. 

that an automated search will be quite complicated and for 
that we prefer to represent the IFS with a binary string. 

Genetic Algorithms were developed by Holland in the 
1960s [8], [9] after the paradigm of natural evolution. De- 
tailed description of GAS may be found in the books by 
Goldberg [lo] and Michalewicz [ll]. In brief, each genera- 
tion of species is represented with a time step of an iterative 
procedure. The GA maintains a population P of n individu- 
als Si, i = 1,. . . , n which, during each generation, undergo 
genetic operations and are evaluated according to their fit- 
ness in their environment thus producing a new population 
of candidate solutions to an objective (fitness) function f. 

p(t) = {s1(t); sz(t); . . . ; s.(t)} (2) 

Each individual sZ is formed by a chromosomal binary string 
of length 1 in which the vector of parameters of the func- 
tion f(x) is encoded. A Simple GA procedure is shown 
in Figure 2. The genetic operator of crossover, applied 
with a probability C-rate, produces individuals represent.- 
ing new points in the search space. Additional variation in 
the genotype is achieved with the operator of mutation. 
Under mutation, a gene’s value (bit) is altered with a very 
small probability Mxate, thus simulating a random walk 
through the string space. The fittest individual of the last 
population will be considered as the acceptable approxi- 
mate solution to the objective function f. 

2. ENCODING THE IFS ON A GA 

Each IFS-chromosome consists of a binary string. We as- 
signed 10 bits per parameter, of which one bit was reserved 
for the sign, to ensure an accuracy of 0.005. Encoding 6 
parameters per affine transformation and up to N affines 
per IFS (N = 4)) yield a string length l= 60 .4 = 240 bits. 

2.1. Initializing the Population 

In the real world the only available data is a discretized im- 
age which is not necessarily an IFS attractor. We therefore 
do not know of any particular niche in the parameter space 
where an IFS attractor (point) might resemble its char- 
acteristics. For an automated search, we must randomly 
choose a vast number of points from the entire hypercube 
P = [-1, +1]24! To bypass this problem, we select vital 
points as follows: While randomly scanning the parameter 
hypercube, we construct a large number of chromosomal 
strings which loosely satisfy constraints derived from the 
Collage Theorem. For that to hold, the area generated 
after one iteration on A’ should cover it almost exactly. 
We therefore require that each affine transformation should 
be contractive and map the image mostly within itself in 
one iteration. The individual affine maps should be ar- 
ranges within A’ such, that there is only minimal overlap 
between them. The IFS chromosome, then, consists of N 
such maps stacked in a single string. To reduce initializa- 
tion time, we approximated the area of convex attractors 
with the area enclosed by only eight extremities. We then 
imposed the constraint that after being mapped once, the 
eight extremities should lie within the approximated area. 
The “gene-pool”? described further below, is also formed by 
this method. Next, assuming that the area of each affine 



Figure 1: Projection of the Mandelbrot set (top) and error- 
landscape (bottom) for the 3-affine IFS family near the fern 
minimum. The slice is generated by randomly deviating two 
of the 18 parameters within the slice [-0.01, 0.011, while 
all other 16 parameters remain unaltered at their original 
fern values. Solutions exist only in the white regions (Top). 

initialize P(t) ; 
evaluate P(t) ; 
while (not finished) do 

t t t + 1; 
select P(t) from P(t - 1); 
operate on P(t); 
evaluate P(t) ; 

end ; 

Figure 2: Sketch of a Simple GA procedure. 

map is proportional to the determinant of the matrix [12], 
we required that each determinant is smaller than unity 
while their total sum nearly equals one, so that the follow- 
ing holds: 

Areaof a=&det ak].(Areaof A)). (3) 
k=l 

where ak is the linear part of the 2-D affine transformation 
wk(X) = akx + b. 

The population size n represents the number of sam- 
pling points in parameter space and is usually dependent 
on the chromosomal length 1. For large 1, n it can be of 
the order of thousands, resulting in slow evaluat,ion. An im- 
mense population size would defeat the purpose of GAS who 
are meant to introduce new sampling points. A tiny one, 
on the other hand, could force the GA into premature con- 
vergence on the first “good enough” local minimum. The 
required size also depends on how diverse and lit the initial 
points are. To ensure a diverse selection of them, we intro- 
duced a Gene Pool. That consists of a very large number of 
individuals (sampling points) which satisfy the aforemen- 
tioned constraints. The first n members of the pool consti- 
tute the initial population. Unacceptable chromosomes on 
every third generation are replaced with randomly chosen 
ones from the Gene Pool. This method permits the use of 
small enough populations, typically of 100 - 500 members, 
which minimizes computational time, while preventing pre- 
mature convergence. 

2.2. IFS-GA Genetic Operators 

The fract.al depends continuously on the IFS parameters. 
A flip of a sign on one of the parameters, however, which 
represents a jump in parameter space, may result in some 
minor alteration of the given image by causing, for exam- 
ple, a reflection on one of the transforms. Despite visual 
similarities of such attractors, the error between them may 
be quite large, while their surrounding neighborhoods may 
possibly constitute viable niches in t.he fitness landscape. 
The GA is capable of reaching such distant points in a sin- 
gle step with the crossover or with the mutation operators. 
The population size, and the crossover and mutation prob- 
abilities were adjusted empirically, and the values used for 
obtaining the minima of Figures 4(B) and 5(B) are summa- 
rized in Table 1. 

Table 1: Genetic Algorithm parameters 

Image 1 
fern 4(B) 5:O 240 

C-rate M-rate 

0.75 0.00067 
leaf 5(B) 500 240 0.75 0.00067 

3. THE GA SEARCH 

The search aims towards recovering the fractal properties of 
the invariant support. A’ and the p-balanced measure ,u* of 



the IFS. The value of the invariant total measure is recov- 
ered in both categories of the test images. Just-touching IFS 
attractors (as is the fern) are more sensitive to the dis- 
cretization than the overlapping IFS. It is therefore more 
difficult to recover the fractal dimension. For attractors of 
overlapping IFS (as is the leaf) the GA has a much better 
performance in approximately identifying intersecting areas 
and optimizing the total density distribution [Figure 4(B)]. 

3.1. Definition of symbols 

N. *. 

N : 

No: 

l . P. 

9 : 

not-raised: 

plot-out: 

coverage: 

Total number of raised pixels in the 
test image. 
Total number of raised pixels in the 
constructed image. 
Total number of raised pixels after 1 
iteration on the test image with the IFS 
No is used to verify the Collage theorem. 
Total invariant measure of the test 
image. 
Total invariant measure of the 
constructed image. 
Contractivity factor. 
Number of pixels in the 
test image that are not raised. 
Number of raised pixels in the 
constructed image that do not belong 
to the test image. 
Fraction of the test image that is 
covered by the constructed image. 

3.2. Objective (Fitness) Function 

The object.ive function both specifies the features to be 
looked for in terms of their errors, and guides the algorithm 
towards an acceptable solution. We formulated a general 
function to accomodate both classes of images within the 
unit square. The exact location of the image inside the 
square is to be found. Flipping the sign of one of the pa- 
rameters moves the search in a separate niche, which in 
general implies the existence of discontinuities. To ensure 
diversity in the chromosomal structure we maintained the 
seemingly uninteresting regions of the error landscape, as 
high plateaus, by imposing penalties. 

Our fitness function [I21 consists of the sum of the er- 
rors: 

1. Vi = The Hausdorff distance. 

2. Vz = The Hutchinson distance and the difference in 
the total invariant measure. 

3. Vs = The pixel overlap together with the difference 
in the total number of raised pixels between the test 
image and the constructed image. 

The error landscape is smoothed with the sigmoidal filter 
(Eq. 4) whose constants were empirically chosen in the first 
few (< 10) evaluations. The three errors adjust relative to 
each other during each evaluation, thus preventing domi- 
nance of one of them, a primary cause of premature con- 
vergence. The overall form of the objective function is: 

Figure 3: (A)-Top: Initial Condition for Powell. (B)-Left: 
3-affine (no stem) fern test image. (C)-Right: powell min- 
imum. 

ERROR = ERROR1 + ERROR2 + EFElOR3 = 2The IFS parameters for all the images may be found in 1121. 

= $ 1 + exp[by&i - K)] (4) 

The function’s robust,ness is verified in the vicinity of the 
(3-affine IFS - no stem) fern parameters with the gradi- 
ent descent (Powell [13]) method. The initial condition 
is shown in Figure 3(A). Smoothing the landscape had a 
tremendous effect, as shown in Figure 3(C) which depicts 
the minimum where pouell arrived and which is very close 
to the global [Figure 3(B)], (see Table 2). 2. 

Table 2: The gradient descent algorithm Powell performed 
remarkably well in minimizing our objective function, when 
starting from the Initial condition of Figure 3(A). 

notlaised 
plot-out 
coverage 

P 
Df 
s 

true fern 
3 affines 

1680 
1680 

0 
0 

100% 
20.54 
1.638 
0.850 

initial 
condition 

PC) 
534 
1428 
1185 
39 

44.72% 
13.26 
1.629 
0.75 

Powell on 
IC 

1695 
1632 
261 
276 

84.09% 
20.54 
1.638 
0.854 



Table 3: Summarized results for the fern attractor: The 
GA solution found on the hypercube (-1.0, 1.0]24 of the 
parameter space P, overall recovers some fractal character- 
istics of the test image more accurately than the minimum 
in the neighborhood of the true fern, found with Powell’s 
met,hod (despite t.he apparent similarity of the patterns of 
Figure 3). 

calculated at various magnifications. This ratio on the 1282 
grid, however, is found exactly: 

‘odN*) 
log(l/pixel-size) 

= ‘ogww = 1530 
log(128) ’ 

log(N) 
log(l/pixel-size) 

= 1og(1663) = 1528 
log(128) ’ (5) 

N 1723 
No 1723 

not raised 0 
plot-out 0 
coverage 100% 

CL 20.70 

Df 1.638 
s 0.850 

true fern 
4 affines 

GA + Powell 
on hypercube 
[-1.0, 1.0124 

1723 
1663 
255 
195 

86.71% 
20.70 
1.920 
0.652 

Figure 4: Just Touching case: (A)-Left: 4-affine fern test 
image. (B)-Right: GA minimum (initial points are ran- 
domly selected). These images, apparently dissimilar, share 
similar characteristics (Table 3) and coordinates. 

3.3. The GA’s search in the parameter hypercube 
P = [-1.0, 1.01= 

3.3.1. Just- touching IFS (fern) 

For just-touching IFS, a very fine grid should be used in 
order to preserve the intricate fine structure. Doubling the 
resolution increases the computation time 8-fold: each mag- 
nification is four times larger than the previous, and the 
iterations necessary for convergence double. Although par- 
allel computing would be most appropriate, we performed 
all experiments serially. A grid of 1282 pixels comprises the 
smallest size in which the most important characteristics 
of the image are still preserved. Many of the points of the 
fern in this size grid appear to be touching, which means 
that the GA will be looking for an overlapping IFS, and 
we do not expect the fractal dimension to be recovered in 
this class of images. In general, the fractal dimension is 
determined by the slope in the ratios 

log(number of raised pixels) 

log( l/size of a pixel) 

From the above numbers and from the summarized results 
of Table 3 we conclude that the GA performed quite well on 
the 128 x 128 grid for N = 4 affines. But we also conclude 
that coarse grids may convey misleading information for 
just-touching IFS atbractors. The fittest IFS chromosome, 
found by the Genetic Algorithm, produced the attractor 
shown in Figure 4(B). 

Table 4: Summarized results for the leaf attractor: The 
IFS found by the GA on the hypercube [-1, 1]24 of the 
parameter space P, satisfies the criteria for solution, and 
also approximates the mass distribution. 

N 3563 
Collage No 3563 

not-raised 0 
plot-out 0 
coverage 100% 

P 980.07 

Df 1.947 
s 0.60 

true leaf 

Figure 5: Minimally Overlapping case: (A)-Left: 4-affine 
leaf test image. (B)-Right: GA minimum (initial points are 
randomly selected). These images, apparently dissimilar, 
share similar characteristics (Table 4) and coordinates. 

3.3.2. Minimally Overlapping IFS (leaf) 

The minimally-overlapping leaf attractor is easier to solve 
than the just-touching fern attractor, because the overlap 
of its maps is preserved throughout various magnifications, 



thus allowing for a larger selection of potential solutions. 
The minimum found by the Genetic Algorithm is shown in 
Figure 5(B). 

The contractivity factor for this IFS (N = 4) is s = 0.61, 
which is very close to the original s = 0.60. Its fractal 
dimension Df = 1.942, is almost exactly the same as the 
original Df = 1.947. We note that the GA approximately 
recovers the density distribution. The summarized results 
for the leaf attractor are presented in Table 4. 

4. APPLICATIONS AND CONCLUSIONS 

In order to extract the essential properties which charac- 
terize the fractal image under study, we used a GA to find 
parameters for 4 affine maps explicitly and their associated 
probabilities implicitly. The properties are incorporated in 
the errors which constitute the objective function. The GA 
is found to be a very robust algorithm in the sense that it 
was easily adaptable to the IFS inverse problem and that 
it does find solutions as specified by the objective function. 
Final convergence on the GA minima is achieved with the 
use of a local optimizer, namely either the gradient descent 
algorithm powell or a simplex method, due to Nelder and 
Mead, namely the amoeba subroutine (Press et al. [13]). 
From the two, Powell is sensitively dependent on the form 
of the evaluation function but is more accurate than amoeba. 
The fractal characteristics of the images to be modeled, 
especially in the minimally overlapping IFS case, were re- 
covered to within 1% error of the total image-overlap, to 
less than 1% error of the Hausdorff distance, and to less 
than 1% error of the total measure of the fractal attractor. 
The evaluation function was modified with sigmoids so that 
the landscape of the error hypersurface is smoothed. This 
resulted in a better performance of the algorithm than the 
“raw” distance functions used in the literature on both GAS 
and SAs (Simulated Annealing algorithm) [14], [15]. 

Our technique aimed mainly towards modeling compli- 
cated patterns, associated with complex physical systems, 
whose structural complexity makes them difficult to study. 
In particular, the IFS-GA can correlate fractal spatio-tempo- 
ral structures, found in nature, to simple hierarchical lat- 
tices from which the Renormalization Group (RG) transfor- 
mation can be formulated. From the RG a nonlinear IFS is 
constructed whose attractor is the Julia set of the critical 
manifold. The critical exponents are extracted from the Ju- 
lia set thus revealing the behavior of the macroscopic quan- 
tities near the critical region. This information is useful for 
prediction purposes. In addition, these models become, in 
essence, classifiers of universality classes for spatietemporal 
fractal patterns encountered in criticality. 

Finally, compression of generalized images with this me- 
thod is a two-step process: A 2-dimensional image can be 
compressed into a graph of a fractal function. The task of 
the GA then, is to search in a 2N-D space, because four of 
the parameters are linearly related by the function’s conti- 
nuity condition. This time, the number of maps N is vari- 
able and can become large. Compression of fractal functions 
has been studied extensively [16]. 
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