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ABSTRACT 

In this paper we introduce a class of morphological oper- 
ators with applications to sharpening digitized grey valued 
images. We introduce t.he underlying partial differential 
equation (PDE) that governs this class of operators. For 
discrete implementations of the operator class! we show that 
instances utilizing a parabolic structuring function, have 
special properties that lead to an efficient implementation 
and isotropic sharpening behavior. 

1. INTRODUCTION 

In [1] Kramer et al. define a novel non-linear transforma- 
tion for sharpening digitized grey valued images. The trans- 
formation replaces the grey value at a point by either the 
minimum or the maximum of the grey values in its neigh- 
borhood, the choice depending on which one is closer in 
value to the original grey value. They show that after a 
finite number of iterations the resulting image stabilizes, 
that is every point has become either a local maximum or 
a local minimum. 

In this paper we show that t,his transformation is an in- 
stance of a class of morphological operators which all have 
sharpening properties. Further, we show that there exists 
another instance of this class of operators that outperforms 
the original transformation introduced by Kramer in algo- 
rithm order complexity and isotropic sharpening behavior. 

2. INTRODUCTION TO MATHEMATICAL 
MORPHOLOGY 

In mathematical morphology [2] the transformation that re- 
places the grey value at a point by the (weighted) maximum 
of the grey values in its neighborhood is known as the grey 
value dilation operator: 

(f @g)(x) = vy4 + 9(x - 41 

In which function f(z), f : x E 22 I+ f(x) E 2, is the 
original image and g(z)? g : z E 22 ti g(z) E 2, is the 
structuring function (“neighborhood”). 

The transformation that replaces the grey value at a 
point by the (weighted) minimum of the grey values in its 
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neighborhood is known as the grey value erosion operat,or: 

(f 8 g)(x) = &fW - g(u - x)1 

Note that in general the grey value dilation operator is ex- 
tensive: (f @ g)(z) 2 f(z) and the grey value erosion oper- 
ator is anti-extensive: (f 8 g)(z) < f(z). Figure 2a) gives 
an 1D example of the dilation and erosion operator. 

3. STRUCTURING FUNCTIONS 

In the remainder of this article we will only consider the fol- 
lowing two structuring functions: First, the flat structuring 
functions as used by Kramer in it.s original definition of the 
extreme sharpening operator: 

cP(x)= -2 :xf#s 
{ 

:xES 

where S is a disc of radius p. Second, the quadratic struc- 
turing functions (QSF) as introduced by van den Boom- 
gaard [3]: 

qP(A)(z) = pq(A)(;) = -+ < z,A-‘a: > 

where A is a 2 x 2 positive definite symmetric matrix. Tak- 
ing the unity matrix for A will yield the parabolic struc- 
turing function q”(x) = -6x’. See for a 2D example of a 
flat structuring function and a parabolic structuring func- 
tion figure 1. In [4] van den Boomgaard et al. prove for the 
class of quadratic structuring functions that: 

l Any quadratic structuring function is dimensionally 
decomposable with respect to dilation. 

l The class of quadratic structuring functions contains 
the unique rotational symmetric structuring function 
that can be dimensionally decomposed with respect 
to dilation: qP(x) = -$x2. 

These properties allow for very efficient algorithms for the 
dilation operator that has be shown to be independent of 
the structuring function size [4]. They are typically of or- 
der complexity O(!V), with N the number of pixels in the 
original image. Note that for the class of flat st,ructuring 
functions algorithms for the dilation operator typically have 
order complexity O(p’N) and are dependent on t.he struc- 
turing function size p. 



a) d 

Figure 1: a) Parabolic structuring function q”(x) = -$ Xi 

b) Flat structuring function cP(x). 

4. EXTREME SHARPENING OPERATOR 
CLASS 

In this section we give a definition of the extreme sharpening 
operator class in terms of grey value dilation and grey value 
erosion operators. Further, we show that iterations of the 
extreme sharpening operator have sharpening properties. 

4.1. Extreme sharpening operator class definition 

First, we rephrase t.he original transformation defined by 
Kramer in the framework of mathematical morphology: 

where case a. stands for 

case a. 
case b. 
otherwise 

F’(x, P) - F(x, 0) < F(x, 0) - F%c, P), 

case b. strands for 

F@(z,p) - F(x,O) > F(x,O) -Fe&p) 

and where f(x) is the original function, g(x) is the struc- 
turing function, 2 the position, p the scale, F@(x, p) = (f% 
g”)(r), Fe(x,p) = (f 8 g”)(r) and F(x,O) = F’(x,O) = 
Fe(x, 0) = f(x). (f @ g)(x) ad (f 8 g)(x) are the wy 
value dilation and grey value erosion operators. This op- 
erator class is parameterized by the structuring function 
gp(x). Setting the structuring function gp(x) to a flat struc- 
turing function c”(x) would result in the original defini- 
tion of Kramer with one modification: Kramer did not 
consider the special case where F@(x, p) - F(x, 0) equals 
F(z,O) - Fe(x,p). In that case the extreme sharpening 
operator as defined by Kramer would behave as the grey 
value dilation operator (F’(x, p)). In case of a single slope 
signal (V2f = 0 everywhere) the application of the opera- 
tor defined by Kramer would result in a translation of the 
original signal. Whereas this new definition would preserve 
the original signal. Figure 2b) gives an 1D example of an 
instance of the extreme sharpening operator class. 

a) b) 
Figure 2: a) 1D example of grey value dilation @ and erosion 
operator 8. b) Extreme sharpening operator. 

4.2. Laplacian properties for 1D functions 

For every 1D symmetric concave structuring function g”(x) 
the following properties of the extreme sharpening operator 
class hold: 

V2f(4 < 0 + Wl(X,P) > f(z) (1) 

V2f(4 > 0 + Wlb, PI < f(x), (2) 
and 

v2m = 0 + Wl(x, PI = f(x) (3) 
where V2f(x) is the Laplacian of f(x). A function g(x) 
is concave if Vxo, ~1 the line between the points (x0, g(xo)) 
and (xl,g(xl)) is beneath the function g(x). 

For symmetric concave structuring functions g”(x) we 
have that for x > 0 and increasing x and for CC < 0 and 
decreasing x that Vgp(x) is decreasing. This implies that 
the intercept of a t,angent line of g”(x) with the functional 
axis is higher for x > 0 and increasing x and for x < 0 
and decreasing x, see figure 3a). The intercept with the 
functional axis is known as the Slope transform S[gp](Vgp), 
as introduced by Dorst and Van den Boomgaard in [5]. 

a) 

:x0 :x. :x* x,: 1x2 
b) 

Figure 3: a) Intercept with the functional axis (Slope trans- 
form). b) Hit-property of dilation and erosion. 

See figure 3b), if we take p arbitrary small, p + 0, 
we may linearly int,erpolate function f(x) between points 
x0, x1 and x2, as V’f(x) < 0 point (x, f(x1)) lies above the 
line between points (xo,f(xo)) and (xz,f(xz)). To detcr- 
mine the dilation and erosion value at x1 we use the hit- 
property of dilation and by duality erosion. AS Vf(xa) = 
v - gP(x1 - x,) = VgP(xl + xa), Vf(Xb) = vgqx1 + a), 

Vf(xa) > Vf(xb) and &J”](vf(Xa)) < ‘%fl(vf(~b)) We 

have do < dl setting the extreme sharpening operator value 



a) b) 

Figure 4: a) Blurred version of original picture. b) One 
iteration of extreme sharpening operator. 

at x1 to the dilation value f(xl) +do = f(xl) +S[gp](Vf), 
i.e. F@(xl, p), satisfying property 1. Property 2 is proven 
by the duality of the erosion operator. 

4.3. Laplacian properties for 2D functions 

Considering 2D functions properties 1 and 2 do not hold for 
all points X. AS V’f(z) = a2f/ax2+a2f/ay2, V’~(X) < 0 
holds if both a2 f /ax2 and a2 f lay2 are smaller than zero. 
In this case we have a concave point of f(x) and property 1 
still holds. The same is true for property 2 with V2 f (x) > 0 
and a convex point of f(x). 

If a2 f /ax2 and a2 flay2 do not have the same sign, 
e.g. a saddle point, which is not convex nor concave, it also 
depends on the gradient values af /ax and 3f lay whether 
the dilation or erosion is chosen as the extreme sharpen- 
ing operator value. For example, if we have V2f(x) < 0, 
a2 f /ax2 < 0 and af lay2 > 0 we have a point with a local 
concavity in x and a local convexity in y. The concavity 
in x would imply that the sharpening operator chooses the 
dilation value (from x) whereas the convexity in y would 
imply that the erosion value (from y) is chosen. The choice 
is made on the highest gradient value, giving the lowest 
Slope transform value in x or y. 

4.4. Sharpening properties 

In order to demonstrate the sharpening properties of the 
extreme sharpening operator class we construct an analyt- 
ical edge model. Let us suppose that the image we wish 
to sharpen is the result of passing a black and white pic- 
ture through a lens and electronic filter which have caused 
it tp become blurred. To retain simplicity in the analysis 
we shall deal only with one-dimensional pictures. Let i(x) 
be a function, i : x E 2 I+ i(x) E 2 of one variable that 
represents the sampled version of the original picture. The 
blurred version f(x), f : x E 2 ti f(x) E 2 is given by 
f(x) = i(x) * h(x) where * is the convolution operator and 
h(x) is the point spread function (PSF), h : x E 2 I+ h(x) E 
2. Let us assume a symmetrical lens, i.e. h(x) = h(-2) 
with finite aperture, i.e. h(x) = 0 for x < -a and x > a 
Moreover h(x) 2 0 and is decreasing for increasing and de- 
creasing x. For i(x) we take the unity step function: 

1 1 
i(x) = o 

:x50 
:x>o 

Note that of(x) < 0 for x E J-a,a] and as h(x) is de- 
creasing and symmetric that V f(x) < 0 for x E [-a, 0), 
V2 f (x) > 0 for x E (0, a] and V2 f (x) = 0 for x = 0. 

The extreme sharpening operator E[f] will only change 
f(x) at points x having V2f (x) # 0. Consider the inter- 
val [-a, 0) with points x having V2 f (x) < 0, see figure 4a). 
This interval represents a concave part of the function f(x). 
Application of one iteration of the extreme sharpening op- 
erator with a concave structuring function g”(x) on this 
interval will result in F@(x,p) at this interval. Note that 
as F@(x,p) > f(x) at this interval (extensivity property of 
dilation), that F@(z,p) is also concave (proven in [5]) and 
that the interval at which points x having V2F@(x, p) < 0, 
i.e. (-b,O), is smaller than the original interval [-a,O) at 
which V2 f (x) < 0. So, repeated applications of the ex- 
treme sharpening operator on the interval [-a,O) are well 
defined and result in an interval at which all points x have 
function values equal to the maximum function value in the 
interval [-a, 0). 

The same holds for the convex interval (0, u] with points 
x having V2 f (x) > 0. In this case, repeated applications 
of the extreme sharpening operator result in an interval at 
which all points x have function values equal to the mini- 
mum function value in the interval. 

It can be shown that in case the structuring function 
gp is rotational symmetric the sharpening properties of the 
extreme sharpening operator also hold for 2D images. 

5. EXTREME SHARPENING OPERATOR: 
PARTIAL DIFFERENTIAL EQUATION 

In this section we introduce the underlying partial differen- 
tial equation that governs the extreme sharpening operator 
class. Given g(x) is a concave structuring function and 
g”(x) = pg(:) (umbral scaling) we have: 

dF@ -= 
ap 

lim F’(x,P+ API - F’(x,P) L 
Ap+O AP 

lirn F~(X, P) ~ gAp -F~(X, P) ~ lirn ‘[gAPI ~ 
Ap-rO AP Ap+O AP 

lim Aps[g](VF’) = SM(VF@) 
Ap+O AP 

and by duality of the dilation operator, that for Ap + 0: 

dF@ 
- = -S[g](VF’) 

ap 

where equalities 1 and 3 are proven in [5] and equality 2 
is discussed in section 4.2. Using properties 1 and 2 and 
without considering saddle points in 2D, as discussed in 
section 4.3 this results in the partial differential equation 
for the extreme sharpening operator: 

T = sign[V2f]S[g](Vf) 

where 
1 : f(x) > 0 

sign[fl(x) = 
-i : f(x) < O : otherwise 

In the remainder of this section we derive the partial deriva- 
tive equations of the extreme sharpening operator for the 



parabolic structuring functions and the flat structuring func- 
tions. For parabolic structuring functions g”(x) = -$x2, 

g(x) = -ix” and S[g](w) = f]w]’ the partial differential 
equation for the extreme sharpening operator becomes: 

wfi %02flIVf I2 -= 
ap 2 

which is apart from sign[V*f] similar to the PDE of the 
morphological scale-space [3]: g = ]VFJ2. For flat struc- 
turing functions g”(x), S[g](w) = ]w] the partial differential 
equation for the extreme sharpening operator becomes: 

y = sign[V2 f]lVf I 

In the next section we will look at the use of both structur- 
ing functions g”(x) in case of the application of the extreme 
sharpening operator in a discrete domain. It will be shown 
that applications of the extreme sharpening operator for 
small values of p is a numerical difference scheme to solve 
the partial differential equation of the extreme sharpening 
operator, in which the stability of the numerical difference 
scheme depends on the choice of the structuring function, 
the type of function values and the minimum value p that 
can be set for a structuring function gp(x) in the discrete 
domain. 

6. DISCRETE APPROXIMATION AND 
EXPERIMENTS 

In this section we will present results of applications of 
the extreme operator using flat structuring functions and 
parabolic structuring functions in the discrete domain. In 
the discrete domain we consider function values as numbers 
given on a grid. We consider two types of function values. 
The first type is integer function values: for instance, the 
grey value range [0, N], where N typically equals 256. The 
second type of function values utilizes a floating point repre- 
sentation. Although the second type is still a discrete type 
it has advantages over the first type at the cost of more 
required storage space for sampled function values. We will 
show for both types of function values that the choice of a 
quadratic structuring function qp(x) as the g”(x) structur- 
ing function for the extreme sharpening operator is favor- 
able over a flat structuring function. 

6.1. Applications of the extreme sharpening oper- 
ator 

For accurate results of the extreme sharpening operator in 
the discrete domain it is necessary to choose the p value 
of the corresponding structuring function gp(x) as small 
as possible. Reducing the value of p increases the number 
of necessary iterations of the extreme sharpening operator. 
The image sharpening can be performed with the applica- 
tion of one step of the extreme sharpening operator for a 
certain (large) value of p at the cost of losing image details 
smaller than the structuring function in the resulting im- 
age. We propose the repeated application of the extreme 
sharpening operator using a small value for p. 

6.2. Integer function values 

When we compare the flat structuring function c”(x) with 
the parabolic structuring function qp(x) in the discret,e do- 
main, where function values are given as integer values on 
a grid, we notice that the flat structuring function c”(x) 
can only be as small as possible for p = 1. The discrete 
approximation of the disc S of the Aat structuring func- 
tion cP(x) then equals a diamond (4-connected) or a square 
(S-connected). 

In case of the structuring function qp(x): p can be as 
small as possible: qp (x) is in effect an infinite response filt.er. 
But in order to have any effect on an image it has to have a 
minimum value of p = 1. For lower values of p the extreme 
sharpening operator will not be able to fully sharpen the 
image, only up to a maximum slope. 

Figure 5: Applications of the extreme sharpening operator 
for 2, 4 and 8 iterations using a 4-connected flat structuring 
function with p = 1.0. 

Figure 6: Applications of the extreme sharpening operator 
for 2, 4 and 8 iterations using a 8-connected flat structuring 
function with p = 1.0. 

Figure 7: Applications of the extreme sharpening opera- 
tor for 2, 4 and 8 iterations using a parabolic structuring 
function q”(x) wit,h p = 1.0. 

In figures 5, 6 and 7 we have depicted the results of 
the application of the extreme sharpening operator for dif- 
ferent numbers of iterations and different structuring func- 
tions gp(x) in case of integer function values. The original 
image is a digitized 2D Gauss function. The desired re- 
sult of the application of the extreme sharpening operator 
should be a cylinder. From the results we may conclude that 
sharpening with a parabolic structuring function qP(x) re- 
sembles the desired result better then when a 4-connected 
or 8-connected flat structuring function is used. This stems 
from the fact that the discrete approximation of a parabolic 
structuring function q”(x) is more isotropic then the dis- 
crete approximation of the disc S of the 4-connected and 



8-connected flat structuring function. But still, the discrete 
integer valued approximation of qP(a) contains (repeating) 
discretization errors, as noted in [6], which will influence the 
correctness of the extreme sharpening operator and the sta- 
bility of the sharpening result after several iterations of the 
extreme sharpening operator, which can be seen in figure 7. 

6.3. Floating point function values 

In case of floating point function values given on a grid, 
the p value for the parabolic structuring functions can even 
be lower than 1 (down to e), which is determined by the 
floating point precision. The minimal value of p for flat 
structuring functions remains 1. 

Figure 8: Applications of the extreme sharpening operator 
for 2, 4 and 8 iterations using a 4-connected flat structuring 
function with p = 1.0. 

Figure 9: Applications of the extreme sharpening operator 
for 2, 4 and 8 iterations using a 8-connected flat structuring 
function with p = 1.0. 

Figure 10: Applications of the extreme sharpening opera- 
tor for 2, 4 and 8 iterations using a parabolic structuring 
function q”(z) with p = 0.2. 

In figures 8, 9 and 10 we have depicted t,he results of 
the application of the extreme sharpening operator for dif- 
ferent numbers of iterations and different structuring func- 
tions gP(z) in case of floating point function values. The 
original image is again a digitized 2D Gauss function and 
consequently the desired result of the application of the ex- 
treme sharpening operator should be a cylinder. From the 
results we may conclude that sharpening with a parabolic 
structuring function qp(z) correctly yields the desired re- 
sult: a cylinder, whereas the sharpening with a 4-connected 
or 8-connected flat structuring function gives cubic-like fig- 
ures. .4gain due to the anisotropic behavior. 

6.4. Continuous approximation 

In the discrete case the p of both the parabolic structur- 
ing functions and flat structuring functions has a minimum 
bound to ensure any sharpening effect. Further research 
should indicate whether it is possible to use the 1D union- 
of-translations implementation of dilation with a parabolic 
structuring function as described in [4] to come up with 
an implementation of the extreme sharpening operator in 
which case we can choose p arbitrary small. 

7. CONCLUSIONS 

We have int,roduced a class of morphological operators with 
applications to sharpen digitized grey value images. We 
have defined the extreme sharpening operator class in terms 
of the grey value dilation and erosion operator from math- 
ematical morphology and derived the partial differential 
equation (PDE) that. governs this class of operators. Fur- 
thermore, we have shown the sharpening properties of this 
class of operators given an analytical 1D edge model. We 
have focused on two instances of this class of operators: 
one utilizing a flat. structuring function and one using a 
parabolic structuring function. We have shown with ex- 
periments in the discrete domain for two types of function 
values, integer and floating point, that the use of a parabolic 
structuring function is favorable over a flat structuring func- 
tion in terms of algorithm complexity and isotropic sharp- 
ening behavior. 
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