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ABSTRACT

This paper addresses the problem of time-varying (TV)
nonlinear system identification. We focus on a class of
(almost) periodically TV Volterra series. Such a model is
shown to well describe mobile sateiiite channels which are
structured as a time-invariant (TIV) filter cascaded with a
TIV zero-memoryless nonlinearity (ZMNL) and a TV lin-
ear filter. The nonlinearity distortion is due to the on-board
satellite amplifier. The TV filter characterizes fading multi-
path in mobile environment. A least squares estimate of the
TV Volterra kernels with finite memory is first derived for
any arbitrary channel input. Then, closed form solutions of
the Volterra kernels are derived for symmetrically circular
input sequences. The theoretical results are illustrated by
simulations.

I INTRODUCTION

Volterra filter is an attractive nonlinear system representa-
tion for two reasons: i) it is a straightforward generalization
of the linear system modelling; ii) the parameters to identify
are linearly related to the output. Many physical systems
are shown to be well modeled by Volterra filters [11]. Time-
invariant (TIV) Volterra filter has been intensively studied
in the literature (e.g. [6][11]). A little attention has been
paid to the more general case of time-varying (TV) Volterra
filters.

This paper focuses on (almost) periodically TV Volterra
systems, which are characterized by kernels changing with
time according to one or multiple periodicities. Such sys-
tems are encountered in many apphcatlons including ro-

tating machinery and mobile communication systems. The
pnresent work concentrates on the second apnlication., Pe-

riodically TV Volterra systems are shown to well describe
mobile satellite channels (principal component of the third-

generation of mobile communication (3]).

Mobile satellite systems are a solution to many technical
and economical problems [3]. In this context, satellite Um-
versal Mobile Telecommunications S Dystems \U}V{TS) chan-
nel is conceived as a multi-application digital mobile system
incorporating terrestrial and satellite components. One of
the objectives of the European Advanced Communication
Technologies and Services (ACTS) project is the modelling
and equalization of UMTS channels.

In satellite UMTS channels, three problems occur:

t) Because of the limited availability of band-width, the
transmitted signal is severely band-limited in order to allow
higher information Dbit rate. Such a filtering causes signifi-
cant intersymbole interference (ISI).

i4) Nonlinear distortions are caused by on-board ampli-
ﬁexq such as Travelling Wave Tube (TWT) and Solid State
Power (SSP) Amplifiers. Such amplifier devices, used for
high speed data transmission, introduce nonlinearity be-
cause they usually work near saturation.

1i1) Multipath fading is caused by rapid changes of the mul-
tipath environment in the earth station to mobile link.
The presence of these distortions leads to a TV nonlinear
channel with memory. Thus, for equalization and receiver
design, it is important to dprwp an adequate model for the
underlymg fadm;, non linear channel.

Modeling and equalization of fixed band-limit.ed satel-
}.‘ltc \,}iauucla haVU Iuccu ;uucusnvcx_y St uulb‘d in lllC ld\l Lwl)
decades. For instance, a Volterra approach has been pro-
posed in (1, 2]; another approach based on neural networks,
has been recerlu_y plupuaeu in lOJ

The problem of multipath fading is one of the major prac-
tical concern in wireless communications. In mobile envi-
ronment, the multipath is mainly due to the surrounding
(e-g. bulldlngs) to the mobile unit. Deterministic as well as
stochastic approaches have been proposed to characterize
fading multipath linear channels (e.g. [10, 12]).

This paper considers a class of TV nonlinear channels
structured as a TIV filter cascaded with a TIV zero-
memoryless nonlinearity (ZMNL) and a TV multipath
channel. Approximating the ZMNL by a finite-order poly-

nomial, the TV nonlinear channel is shown to be a TV

Volterra system. We derive a Least Squares (LS) estimate
of the TV Volterra kernels. The LS method does not need

narticular statistical assumpt n tha al o
PO it uitn SuGuiovival GDY\‘JIAPUAULAO Ull hllC unyul ‘lsllﬂl CA\;CPI:

certain persistence-of excitation properties. However, the
method needs the Volterra kernels to be of finite memory.
This restriction is relaxed using circularly symmetric i.i.d.
input sequences. Such inputs make the Volterra kernels or-
thog,onal to each other. We therefore derive closed-form
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11 CHANNEL MODEL

SoARAAININGAS VIR A LA

A mobile satellite channel consists of a cascade of a classical
satellite channel, describing the satellite to earth basesta-
tion links, and a fading multipath channel, describing the
earth station to mobile link [3]. In this sectxon we provide
a Volterra series-based model to describe the input-output
relatjonship of the simplified mobile satellite channel given
in figure 1.

Let I"”"}I be the information 3y1u‘uul sequence. The
complex envelope of a linear modulation of {a(k)} may be
expressed as

z(t)= Y alk)p(t - kT) (1)
pAa

k=—oc

where p(t) is the impulse response of the pulse-shaping fil-
ter, T is the data rate.

The modulator output is filtered by a band-limited TIV
linear filter. Let {h(t)} denote its impulse response. The



transmitted signal can then be written as

o= { Z a(k)g(t — kT)eth} £ Re {Sb(t)ej”"t}

k=—o00
(2)
where
g(t) = p(t) x h(t)
and * denotes convolution.

The nonlinear satellite transponder, which operates at
or near saturation, is represented by a ZMNL. The non-
linearity is characterized by amplitude distortion (AM/AM
conversion) and phase distortion (AM/PM conversion) [1].
The transponder output can then be written as (using the

amplitude and phase representation s,(t) = R(t)e?*(*)

d(t) = Re { f(sb(t))e™*} 2 Re {dp(t)e?=*}  (3)

where f is a complex ZMNL. In the sequel, the ZMNL is
modeled by an I-th order polynomial, i.e.

I
do(t) =D eusi(t) @)

where the a;’s are complex coefficients. Thus, the baseband
complex envelope of the transponder output is

dp(t) = Xl:a.- [ i a(k)g(t — kT):| (5)

k=—0c0

which can be rewritten as

dy(t) = ;ai i (H a(k- )) [[s¢-&D) (6)

kj,...kj=—00 \r_-1

We assume that the bandwidth of the down link fil-
ter is large enough to neglect its distortion effects on the
transponder output. For simplicity, the same notation w, is
used for the different carrier frequencies used in the channel.

The multipath fading is usually described as a TV tapped
deélay line. The time variations are often modeled by a
stochastic process [10]. However, for mobile radio channels,
it has been shown that the time variations are (almost)
periodic (e.g. 12L

Let L denote the number of delayed versions of d(t) col-
lected at the receiver. The noiseless received signal is

r(t) =y plt)d(t - n(®)) M

=1

where p;(t) and Tlé ) are the attenuation factor and the
propagation delay for the {th path. Substituting (6) into
(7), we obtain

r(t) = Re {ry(t)e’*} (8)

where 73(t) is the complex envelope. After sampling, the
noisy received discrete-time complex envelope is found to
be

I 0 i
yn) = Do Y (Ha(h)) )

ki,...kj==—o0 \r=1

L i
> o [ oln~ kAT —m,) + v(n)
=1 r=1

where v(n) is an additive noise including the down-link
noise and other disturbances. The complex envelope can
be rewritten as

YOI SED SR

i=1 kj,..ki=—00

L
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=1

( a{n — k) | +v(n) (10)

As in [12], we assume that the 7;,,’s change linearly with
time, i.e. 71, = An+ A7 (which 1mphes that the mobile unit
has constant velocity). The time variations of the channel
are mainly due to the term e¢’“<"n. Thus, the time varia-
tions of the other terms are neglected in the sequel. Under
these assumptions, we obtain

y(n) = Z Z hi(n; k;) (Ha(n—kﬂ) +wv(n) (11)

i=1 kj,. r=1

where k; = (ki1, ..., ki), and

L
hi(rik) =) 0iu(k)e™ ™ (12)
=1

i
0:,1(k;) = [Ptnej“’“\‘n H g(k-T — 7, )J (13)
r=1

The frequency w; = wA;, is known as the Doppler fre-
quency associated with the /th path. As mentioned before,
the variations of the parameters ;,(k;) w.r.t. n are small
compared to that of the exponential e’“*". The 6;,(k;)’s
are assumed complex constants in the following.

The input-output relationship (11) belongs to the class
of TV Volterra filtering with factorizable kernels. It is also
worth noting that the fading multipath channel model (11)
is an extension of the linear model proposed in [12] to non-
linear channels.

III LS ESTIMATION OF VOLTERRA
KERNELS

In this section, we assume that the kernels h;(n;k;) have
finite memory length say q. The discrete-time received
signal is then

y(n) = Z Z hl(n k) <H n—kr)> +v(n) (14)

i=1 kj,.. r=1

Also, assume that the input sequence satisfies certain
persistence-of-excitation conditions [8]. Such conditions
guarantee unique determination of the Volterra kernels.

The Volterra kernels can be assumed symmetric without
loss of generality, i.e. hi(n;k;) is left unchanged for all the
i! permutations of the mdxceq ki1,...,ki. Thus, the non-
redundant regions of the Volterra kernels are

Fi={k10<k <..<ki<q}, i=1,.,1

k)

Let P(k;) denote the number of distinguishable permuta-
tions of (ki,..,k:), which can be expressed as

i!

Hi:l (Z;:r 8(kr — k; ))

P(k;) = (15)



For example, P(k ) =1i! when k; # ... # ki. and P(k;) =1
when k; = ..
The slgnal model (14) can be rewritten as

! /i \
wm) = 3" 3 hi(ni ko) P(k,) U’[a(n - k,)) +v(n)
i=1 k€l ; r=1
(16)
Let us define the following notations
0:(k) = [6i1(k)), . 0:0(k)]
01' = [01’(0,-.,0),01’(0,--, Q)yvo‘l(q_ 17Q)“"q)1
oi(an7-"1q)]
6 £ [61,..,60/]"
w £ [“)17 1wL]T
and
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r=1
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ai(n;9,4,---,9))
an) 2 Ila(n) ar(n)l
“\rv; LRINTSy ey RITY))
plwin) & [T, e""“‘]

The signal model (14) can then be expressed as

1 \
y(n) = ZE i(n; k) Pk,) kl‘[l a(n — k,)) +v(n)

(17)
which can be rewritten as
y(n) = (a(n) ® d(w;n)) 6 + v(n) (18)
where ® denotes the Kronecker product operator. _
Collecting N measurements y = (y(0),...,y(N —1))" of

the received signal yields the following matrix formulation

y=A(w)d+v (19)
where
a(0) ® P(w; 0;
| swesy ]
A(w) = :
qu—n®me—n
and v = (v(0),...,u(N — 1))T. The parameter vectors to

estimate are then # and w.
Assuming that the additive noise is white, the LS esti-
mates of 8 and w are given by

(8,&) =arg min Jy(y; 0, w) (20)
0w

where

| A S ALY W ARV, IV . S Y WY, 3} 91\
JIWYH U, W) =y T AalWw)u) T AWy \41)
If the Doppler frequency vector w is known, the LS estimate

af D iq pian Lo
of 8is given v

o~

0= (AW)"AW)) AWy (22)

where ! stands for the pseudoinverse. In practice, w is un-
known. Substituting (22) into (21), we have now to mini-
mize the following criterion
Tl sy —wH(T _ D )y (
YAYH W)=Y T LAWY \
where Pa(w) is the projection matrix on the signal subspace
(if w is the true Doppler frequency vector)

D AN AN
FA(w) = Alw) | Alw)

Since Ji(y;w) is nonlinear w.r.t. w, we cannot derive an
analytical solution for the Doppler frequencies. Thus, we
resort to numerical optimization techniques, e.g.

S =58 — uVw I (y;w) (25)

"
[
~

T anaiire ranid convercencs
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initialization &'* of the Doppler frequencies. The next sec-
tion can be used for this matter. The next section also de-
rives closed form solutions of the Volterra kernels when the
input is a circular Gaussian independent sequence.

IV VOLTERRA IDENTIFICATION FOR
CIRCULARLY SYMMETRIC INPUTS

In the previous section, apart from the persistence-of-
excitation property, we made no additional statistical as-
sumption on the input sequence. However, the Volterra
kernels were assumed to have finite memory lengths. This
condition can be relaxed if special inputs are used in the
identification procedure. We then reconsider the Volterra
system in (11). The non-redundant regions of the Volterra
kernels are redefined as
r,={kl|—OOSk1$_<_k,SOO}, ’i=1,...,I

The a motivating the use of special i mpl ts is to make
erra kernels orthogonal. Real stationary Gau551an

input has been used in [7]. In this, case, the solutions are
rather comunlicated excent for Snr‘nnr‘-nrr‘nr Volterra Sys-

rather compln excep econc-oraer 1Lerra

tems. An alternative solution using cyclostationary mputs
has been proposed in [4] Volterra system identification us-

P sequences as inbut has Lbeen considered in [12)
llls AL WA 1C\1uclluuo L= ] lllyub A4Cw) WTTIL LvULIOIuTAI U lll lJ.U

In this paper, we show that closed form solutions can be
obtained for any circularly symmetric independent input
sequences.

Let a be a complex random variable and let p and ¢
denote its modulus and its phase (modulo 27). a is said
circular if for any 3, a and aexp(j3) have the same distri-
bution [9]. This implies that p and ¢ are independent and
that ¢ is uniformly distributed over [0, 27). In the Gaussian
case, ¢ has a Rayleigh distribution. Let the input sequence
{a(n)} be formed by independent realizations of a.

Let . = (71,...,7), 1 < v < I. Consider the cross-
correlation between the output y(n) and conjugated and
lagged copies of the input a(n):

o
=
o

S
=

Mya..a(niz,) 2 E { v [ o - n)} (26)

s=1

where r_ = (11,...,7), 1 £ ... £ 7, 1 £7 < I. Rewritting

(11) as in (14), we obtain

Mya..a(mZ,) =Y Y hi(nik,)Plk)ma. o (kiiz,) (27)

i=1k,€F



where

ma,,_a(ﬁi;L)éE{ an—kq)Ha*(n—‘r,)}
\ J

s=1 s=1
The circular symmetry implies the following property [9]
)=0 (28)

when i # 7. This ensures the orthogonality of Volterra
kernels having different order of nonlinearity. Thus, we can
estimate separately the linear kernel, the quadratlc kernel

the cubic kernels and so on. We can then drop Et 1
(27) and obtain the following equations

Mya.a(BL) = Y hi(nik)P(k)ma. alkiiz)  (29)

k.€ti

ma---“(&i;lr

The 2ith moment ma...a{k;; ;) can be written as

Ma.. a(—m’—a)

E {Hp(n —k)pln—7)  (30)

expj Z(d:(n —ks) — @(n — ‘r,))}

a=1

Lemb the independence of the modulus and the phase of

A .
circular random variables, we cbtain

ma...a(k&;Li = E{HP(TL— k’)p(n_TS)} (31)

s=1

E {expj E (p(n—ks) — Pp(n — "'a))}

Note that the vectors k; and 7, are such that k; < ko <
<kiand 11 < 1 < < 7;. Moreover, the ¢(n)’s are
mdependent and E {exp ]¢(n)} 0. This yields

Ma..a(k;iT) =0 ifk; #1, (32)
We can then drop ), ., in (29):
Mya..a(ni k) = hi(ni k) Pk )ma a(ksk)  (33)
Thus, we infer the following closed form solutions

Mya...a(n; ;)
P(k;)ma...a(k;i ;)
I and

hi(n; k) = ki€ F: (34)

where i =1, ...,

Ma...alkss ;) = E{H|a(n—k.)l"’}
s=1

For Gaussian circular inputs, we obtain

Ma...a(0;;0;)
Plk,) (35)

Ma.. "'(kﬂ—d) =

where m,...(0;;0,) is the 2ith order absolute moment of

{a(n)}:

>

Ma...a(0;;0;) E {la(m)/*'}

4 2
= to

where o2 denotes the variance of a(n). Thus, in this case,
the Volterra kernels are given by

h,-(n,;&.) = w’ k. e Fi, i Z 1 '36
75 Ky LA (

H 24
i oc*

The Volterra kernel estimates are derived by replacing
the theoretical moments mya...a(n;k;) by their estimates

Mya...a(n; k;) in (34):

Mya...a(n; K;)

R k) = Bl yma (i )

ki€ Fi,i>1 (37)

If the Volterra kernels are TIV ie. mya..o(njk;) =
Mya...a(k;), consistent estimate can be obtained from a sin-
gle record of input-output data:

Mya...a(k;) =NX_: l-Ila"(n—k,) (38)

For the (almost) periodically TV Volterra system (11),
we consider the following cyclic cross-correlations

Alya...a(/\;_d é Nl}:noo szya G(n’ ')e_j)‘n (39)

According to (12), we get

Mya..a(X k) = Plk;)ma...a(kii k) Zotz( D8 — w)

(40)
Thus, the statistic | Mya...a(A; k;)| peaks at the Doppler fre-

quencies w;, | = 1,...L, prov1ded 0:.(k;) # 0. This also
allows the determination of L, the number of paths. Once
the wy’s are retrieved, the 6; z(k ) can be obtained as

Mya. o(wi k;)
P(k )ma a’(—l’—l)

From a single record of input-output data, the cyclic
statistic Mya...a(A; k;) can be consistently estimated by

6i1(k;) =

(41)

N-—-1

Nzy(n Ha(n— He ™ (42)

A consistent estimation of the Volterra kernels is then ob-
tained as

Mya. (N K:) =

e]w,n

/’;i(n;ﬁ ) — Zl 1 ya a(w“ t)

Pl )ma.al (43)

—U—a)

where the estimate @;’s are obtained using the peak picking
technique on the statistic Mya...a(.;.).



V SIMULATION RESULTS

In this paper, we present simulations for the LS estimation developed in section III. Detailed study of the method proposed in
section IV will be presented elsewhere. However, the initialization of the Dopller frequencies in the LS algorithm is provided
using the cyclic cross correlations developed in section IV.

Consider a linear-quadratic Volterra system. The input sequence is Gaussian circular and white. The ZMNL coefficients
are a1 = 1 and ag = 0.5+ 0.2i. We consider a multipath environment composed by a direct path i.e. w1 = 0, and a reflected
path with Doppler frequency wg = 27w x 0.05. The system memory is set to ¢ = 10. The signal-to-noise ratio is SN R = 10dB.

Figure 2 represents the average of the second-order cyclic cross correlations over k; = 0, ..., ¢ from a single record of input-
output data of length N = 128. The MSEs of the linear and quadratic kernels LS estimates are computed using Monte-Carlo
experiments. Figure 3 displays the averages of the relative MSEs of the linear and quadratic kernel estimations.

VI CONCLUSIONS

This paper addressed (almost) periodically TV Volterra systems. Such systems are shown to well describe mobile satellite
channels. We first derived a least squares estimate of the TV Volterra kernels. Then, we focused on circularly symmetric
inputs. Circularity and independence of the input sequence make the Volterra kernels orthogonal to each other. We therefore
derived closed-form solutions for the TV Volterra kernels.
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