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ABSTRACT 

A diagonal coordinate representation for Volterra filters is 
developed and exploited to derive efficient Volterra filter 
implementations for processing carrier based input signals. 
In the diagonal coordinate representation the output is ex- 
pressed as a sum of linear filters applied to modified input 
signals. Hence, linear filtering methods are employed to 
implement the nonlinear filter on a baseband version of the 
input. Downsampling is then used to reduce computational 
complexity. 

1. INTRODUCTION 

The Volterra fiker [5] is one of the most widely used nonlin- 
ear system representations. in large part because the output 
is a linear function of the filter parameters. ,4 causal, stable, 
time-invariant, finite memory, discrete-time system may be 
represented in terms of the Volterra filter output 

(1) 

where 

m-1 m-1 

Yn(k) = c ... c h,(k1,...,k&(k-k.) (2) 
k,=O k,=O i=l 

Here m is the memory length, hn(lE1,. . . , Icn) is the nth or- 
der kernel, and u(k) is the input. The kernels can be as- 
sumed symmetric with respect to any permutation of the 
independent variables without loss of generality. 

One of the problems inherent to the Volterra represen- 
tation is the computational complexity involved in calcu- 
lating the output due to the large number of parameters in 
the Volterra kernels. There are several methods of reduc- 
ing computational complexity using approximated Volterra 
filters. 

This paper develops a computationally efficient method 
for exact Volterra filter implementation by assuming the 
input to the system is band limited. Band limited inputs 
frequently occur in communication systems applications of 
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Volterra filters, such as arise in equalization of nonlinear 
channels [4, 11. The computationally efficient implementa- 
tion presented here is obtained by expressing the Volterra 
filter in terms of a diagonal coordinate system. The out- 
put is then given by a sum of linear filter outputs operating 
on nonlinear combinations of the input. Down-sampling is 
used to decrease the computational cost of implementing 
the linear filters. The diagonal coordinate representation 
also offers clear insight into the relationship between the 
characteristics of the output in the frequency domain and 
the filter parameters. This interpretation offers significant 
advantages over the multidimensional frequency domain in- 
terpretations proposed in [2] for many problems. 

The outline of this work is as follows. In Section II 
the diagonal coordinate representation for the Volterra fil- 
ter is derived. The down-sampling based computationally 
efficient implementation for band limited input is derived 
and analyzed in Section III. The paper concludes with a 
summary. 

2. DIAGONAL COORDINATE 
REPRESENTATION FOR DISCRETE TIME 

FINITE MEMORY VOLTERRA FILTERS 

It is insightful to rewrite the Voltcrra filter output in terms 
of the diagonal elements of the kernel. Begin by removing 
the redundant summation indices in (2) associated with the 
kernel symmetry. We write 

m-1 m-l m-1 

Y,(k) = c -pp,(kl,...,k,) 

kl=O kz=k, k,=k,-3 

xC(kl,. . . A&@ - kz) (3) 
i=l 

where C(kl, . . . , kn) is the number of different possible per- 
mutations of the set of numbers kl, . . . , k,. 

Now introduce the change of coordinates 

k, = s 

ki = s+ri-l Vi=2,...,n (4 

so that the output of the nth order kernel is written as 

m-l m-1 m-1 rn-l--r,-l 

Y,(k)=C C ... C Ch~(s,s+rl,..., s+r,-1) 



n-1 

x C(0, I-, , . . . , rn-l)u(k - s) fl u(k - s - r,) (5) 

i=l 

Define the new signals 

n-l 

V r1 ,..., r,-l (k) = u(k) -n u(k - rt) 

:=l 

and filters 

grl ,..., r,-l (k) = C(0, rl,. . . , rn-l)L(k, k+rr , . . . , k+r,-1) 
(7) 

Hence, (5) may be rewritten as 

m-l m-l 773-l 

y4k) =c c ... &x I..., r,-l(k)*gr ,,..., r,-,(k) (8) 

where * is the convolution operator. 
Here we have expressed the output of the nth order 

kernel as a sum of one-dimensional convolutions. A one- 
dimensional frequency domain description for the nth or- 
der kernel output is obtained by taking the discrete-time 
Fourier transform of (8) 

m-l m-1 m-1 

Y,(w) =c c ... c K-1 I..., r,,-l (w)G, I..., rn-1 (w) 

(9) 
Here V,, ,..., r,-l (w) and G,, ,.,., r,-l (0) are the discrete-time 
Fourier transforms of vrl ,..., r,-,(k) and grl ,..., rn--l (k) re- 
spectively. 

While it is useful to think in terms of diagonal coordi- 
nates, it forces a rather cumbersome notation. Let O(n, m) 
be the number of non-redundant diagonals, paralleling the 
main diagonal, in the kernel h,(kl,. , . , k,,). We may ex- 
press D(n, m) in closed form [3] as 

,Now define rJ, j = 1,2,. . . ,D(n,m) as the (n - l)- 
tuple [ri, . . . , r,,-i] corresponding to the jth diagonal of 
hn(kl, . . . , kn) so that we may rewrite (8) and (9) as 

D(v4 
yn(k) = c gr, (k) * urj (k) (11) 

,=l 

and 
D(n,m) 

Y,(W) = C Grj (w)Vrj (w) 

respectively. 

3=1 

We refer to (11) as a serial implementation of a ho- 
mogeneous Volterra filter of order n. The computational 
complexity of this implementation is determined as follows. 
The average length of the impulse responses gr, (k) is 

m-1 m-l 773-l 

N length = C C ... C (m-f-+1) l(D(n,m)) 

q=o sz=r, r,-, =rn-2 

n+m-1 
= 

n (13) 

(b) n=3 
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Figure 1: Frequency support of input and modified 
input. 

The number of real multiplications required to calculate 
vrj(k), j = 1,2,. . . , D(n, m) is approximately bounded by 
2D(n,m) [3]. Hence, the overall number of real multipli- 
cations required to compute each output value is Mseriar = 
D(n, m)(2 + Nhgth), assuming the convolution is imple- 
mented in the time domain. 

The diagonal coordinate representation is particularly 
useful interpreting systems that are output band limited 
because the output frequency content is directly related to 
the frequency response of the diagonal elements of the ker- 
nel. In the following section we extend this interpretation 
to include knowledge of the input frequency support. 

3. EFFICIENT IMPLEMENTATION FOR 
CARRIER BASED INPUT 

Let the input to the nonlinear system, u(k) be a band lim- 
ited with bandwidth Aw and center frequency WO, as de- 
picted in Figure 1 (a). We assume all frequencies are nor- 
malized to the interval [-A, ~1, with w = r representing 
the Nyquist frequency. The output of an nth order nonlin- 
ear system may have energy at frequencies up to n times 
the highest input frequency. Hence, to avoid aliasing in the 
system output we require n(ws + F) 2 A. For sake of 
simplicity, we shall assume n(ws + F) = a. 

While carrier based signals are often continuous func- 
tions of time, the discrete-time approach followed in this 
section is instructive and leads to an efficient discrete-time 
implementation for sampled continuous-time signals. 

3.1. Frequency Domain Interpretation 

Equation (12) indicates that the band of frequencies in 
which the output y,(k) lies is limited to the bands for 
which vrj(k), j = 1,2,. . . , o(n, m) contains energy. Hence, 
we relate the frequency support of the input u(k) to that 
of the vr,(k). The DTFT of the input, U(w), has two 



bands of energy in the range [-x,x]. They are, I- = 
[-w. - 9, -wg + y] and It = [ws - F7ws + 91. 
We define 

u+(w) = (14) 

u-(w) = 

{ 
(15) 

Clearly, V(w) = U+(w) + U-(w). 
. 
. 

Foragivenie {l,... , D(n, m)} we write ri = [ri, . . . , rn-i], 
. 

z-‘l, I 
and thus do not explicitly indicate the dependence of the el- expwZ/-n)k] 

ements t-1,. . . , r,, on i to simplify the notation. The DTFT 
of u(&r,) is U(w) exp(-jwr,), which is written as CJ:- (w)+ Figure 2: Frequency band decomposition implemen- 

UT:(w) by defining VA (w) = Ut (u) exp(-jwr,) and U,T (w) = tation. 

U-(w) exp(-jwr,). Thus, we have 

Vi,(w) = U(w) * U(w) exp(--jwri) * . . . 

* U(w) exp(--jwr,-1) 

= (u+(w) + u-(w)) * (Uf’, (w) + &y(w)) *. . . 

* cc-, (WI + b-L (WI) (16) 

Distribute the convolution over addition to write 

Vr, (W) = 2 Vr,,l(W) 
I=0 

(17) 

where Vp,,~(w) involves convolutions of 1 terms U<(w) and 
n - 1 terms UT;(w). That is, 

vi,,o(w) = u-(w) * UC(w) * ... * ur;-,(w) 

Vii,l(W) = U+(W) * U,;(W) * “‘* U,-,(W) + 

u-(w) * ur’, (w) * U,-,(w) * . . . * UT;-, (w) + 

u-(w) * u,;(w) * ... * U,&(w) * u,‘,&4 

Vr,,n(w) = U+(w) * Ur’, (w) * . . . * Ut-, (w) (18) 

By grouping the terms in this manner, we may identify the 
frequency band containing energy for each Vr,,l(w). Since 
all terms in Vrj,l(w) are a convolution of 1 terms from I+ 
and n - 1 terms from I-, Vi, ,I (w) has center frequency IWO + 
(n - I)(-we) = (21 - n)ws and its energy is limited to the 
frequency band 

II= w0(21-n)-n$f,w0(21-n)+n~ 
( > (19) 

as illustrated in Figure 1 (b) and (c) for n = 3 and n = 4, 
respectively. The frequency bands I1 overlap only if nAw > 
2ws. 

While the filter Gr, (w) may have nonzero response over 
the entire interval [-a, n], we need only consider its behav- 
ior on the bands II; 1= 0,. . . , n, so we define 

Gr,,r(w) = Gr, (~1 ifwEIr 
“Don’t care” Otherwise (20) 

We may now express the output of the system in terms of 
output associated with each frequency band 

Y,(w) = 2 &J(W) (21) 
l=O 

where 
D(n.m1 

Yn,l(w) = 2 ’ Vri,l(w)Gr,,l(w) 
i=l 

(22) 

This decomposition explicitly indicates the effect of the 
Volterra kernel on each frequency component of the output. 
This representation is particularly useful where the nonlin- 
ear effects on a limited number of frequency bands are of 
interest, since t.hen only a subset of the Yn,l(w) need be 
evaluated. For example, in a communications system ap- 
plication the nonlinear terms that occur in the vicinity of 
the carrier frequency are of greatest concern, since the other 
nonlinear terms can be eliminated by linear filtering. This 
decomposition also suggests an efficient implementation for 
the Volterra filter. 

3.2. Efficient Implementation via down-sampling 

First note that the determination of Vr,,l(w) and filtering 
by Gr,,l(w) may bc performed in terms of baseband data 
by frequency shifting the U:(w) and U< (w) to center them 
on DC. Denote the corresponding baseband time signals 
as fif,(lF) and iirj(k). By multiplying the appropriate set 
of time signals iit, and ti< (k), we obtain a baseband 
version of ur,,r(k), denoted as c,,,,(k). Next, filter c7ri,r(lc) 
with Br,,r(lc), where Gri,l(lc) = exp(-j(21 - n)wok)gr,,r(k), 
to obtain &r(k). Lastly, we obtain y,,l(lc) by modulating 
&r(k) to the Ith frequency band. That is, 

yn,l(k) = exp(j(21- n)wok)ih,l(k) (23) 

The baseband implementation of the Volterra filter is de- 
picted in Figure 2. In summary, first the input is demod- 
ulated, then a baseband version of the nonlinear system 
associated with each frequency band is implemented and 
these outputs are modulated back to the proper place in 
the spectrum before combining them. 



L 

Figure 3: Efficient implementation via down- 
sampling. 

The highest frequency component of the baseband data 
Gri,l(k) is at F, If F << ws, then an efficient imple- 
mentation is obtained by down-sampling ii+(k) and 3-(k) 
prior to computing the Gr,,r(k). By so doing, both the mul- 
tiplications required to compute 3r, ,I (k) and the filtering by 
Gr,,l(k) are performed at a lower data rate. Let R be the 
down-sampling factor. We introduce the following notation 
for the down-sampled data 

&,,l(k) = cr,,l(kR) 

and down-sampled impulse response 

(24) 

i?r,,l(k) = h.,l(kR) (25) 

The frequency domain representation of (24) and (25) are 
respectively 

Vr,,l(w) = h,,l(w/R) = Vr,,r(w/R+ (21 - n)wo) (26) 

and 

cr,,r(W) = er,,l(w/R) = Gr,,r(w/R+ (21 - n)wo) (27) 

Additional efficiencies are obtained if u(k) is real since 
then U+(w) = (U-(w))’ [3]. In this case have Vri,l(w) = 

(Vr,,,+l(w))* and it suffices to implement only one half of 
the frequency bands, that is, we require calculation for only 
N bands = [ 2 1 * frequency bands instead of n + 1 bands. 
Further efficiency is obtained if u(k) = z(k) cos(wsk) where 
z(k) is real, since then tit(k) = ii-(k). Note that this im- 
plies Grj,i(k), 1 = [Fl , . . . ,n - 1 is a scalar multiple of 
Grj,n(lc), so only i’rj,“(k) needs to be calculated. Figure 3 
depicts a down-sampled, baseband implementation for this 
case. The steps labeled in Figure 3 are described as follows: 
In step 2 the input is frequency shifted and then lowpass lil- 
tered in step 3 to obtain a baseband signal corresponding to 
the positive frequency component of the input. Each of the 
time shifted baseband signals is downsampled in step 4 and 
products of the downsampled signals formed to obtain the 
D(n,m) 3r,,n(k)‘s. E ac 8rj,,,(k) is then split. into &an& h 
and multiphed by the cor;responding scale factor before be- 
ing filtered by the frequency shifted down-sampled impulse 
responses &,,l(Ic) in step 6. Next, we sum the O(n, m) data 
&earns belonging to each frequency band and up-sample 

(including interpolation) each of the Nbands bands. Lastly, 
in step 9 each band is moved it into its proper position in 
the spectrum, and the bands summed to obtain t.he overall 
output. 

3.3. Computational Complexity of Down-Sampled 
Implementation 

The reduction in computation afforded by down-sampling is 
obviously a function of the relative bandwidth, e. Clearly, 
there is a relative bandwidth for which the savings incurred 
by the lower sampling rate outweigh the overhead needed 
to down-sample, up-sample and separate into different fre- 
quency bands. For purposes of comparison we consider the 
case where u(k) = z(k)cos(wsk + 4) with z(lc) real. It is 
straight forward to generalize these results to complex val- 
ued X(/C) or u(k) although somewhat more tedious. We use 
real multiplications per sample as the standard of compu- 
tational complexity. The computational complexity is not 
only a function of the kernel parameters and relative band- 
width, but also depends on the length of the low pass and 
interpolation filters. Whenever a generic low pass filter is 
needed we assume an equiripple linear phase FIR filter with 
a stop-band ripple 61 = 0.01 and passband ripple 62 = 61. 
This gives 40 dB of stop-band attenuation. The filter length 

is estimated using Bellanger’s formula as 
21%0(&) 

3Af 
, where 

Aj= W*top-Wpo“ As before, we assume 27r = n(2ws+Aw). 
After s$tting into frequency bands and down-sampling, 

the length of each gr,,r(k) should decrease, on average, by 
a factor of R. Let Mength denote the average filter length 
of &,,l(k). We shall bound &n@h as max{l, Nlength/R} II 
A 

hngth < hngth. 
We now proceed counting the multiplies associated with 

each of the stages defined in the previous subsection. One 
multiplication per sample is necessary in step 2. In step 
3 we implement a generic low pass filter wilh wpass = 
+, W&q, = 2wo - 9. This implies the filter length is 
2n(2we + Aw)/(2wo - Aw). Assuming Aw < wo gives a 
hlter length of approximately 2n. Hence, implementing 
this hlter in the time domain requires 2n real multiplica- 
tions. Note that the output of this stage is z(k), which is 
real. At stage 4 we assume that R is an integer and thus 
no multiplications are required at this stage. Notice that 
from here until stage 8 the computations are performed 
at the lower sampling rate. In stage 5 we must generate 
D(n,m) output st.reams &,,n(lc). The number of multi- 
plications per sample required to calculate these nth or- 
der products is shown to be approximately 2D(n, m) in [3]. 
Hence, 2D(n, m)/R multiplications are required per output 
sample. Next we implement Nhan&D(n, m) filters of av- 

erage length fiiength. Hence, there are D(n~m)&.sndJienath 

multiplications required per output sample at stfge 6. 
There are Nbilnds up-samples at stage 8 that each re- 

quire an interpolation filter. Assuming a generic low pass 
filter with wpass = n%, wSfop = 9 - n% we obtain a 

ZOaR hlter length of 2’o~~~105 = 3(Plr--nAwRJ. Thus, there are 

Nbands 
2OlrR 

3(27r--nAwR) 
multiplications per sample. Note that 

there is a tradeoff between interpolation filter length and 
the down-sampling rate. As R increases, the required in- 



terpolation filter length increases. It is convenient to ex- 
press this tradeoff in a slightly different form. Clearly, 
R < & so let R = K& where 0 < K < 1. Since 2s = 

n(2wo + Aw), we have R = KF. Let Q = & 
denote the baseband system fractional bandwidth so that 
R = 5. Thus, the interpolation filter length is 10K 

3(1--K)B. 

The number of real multiplications required for this stage 
is Nbands q+&. Lastly, there are Nbanda multiplications 
per sample associated with stage 9. 

Thus, combining each stage, the total number of multi- 
plications per sample for the down-sampled implementation 
is 

Mdown = 1 + 2n + -$‘(2 + Nbnndsfikngth) 

10K 
+&m.+ 3(1 _ rc)Q + Nbands 

We now determine the K that minimizes the number of mul- 
tiplications by setting the derivative of (28) with respect to 

K to zero. Define P = lONbsnd.. Hence, 
3D(n,m)(2+Nb,,d.Nlength) 

the minimal number of multiplications per sample is 

M down = 1 -t ‘2n + D(n,m)(Q -t P)(Z + Nbandafikngth) 

+Nbands (g + 1) (29) 

Recall that the number of multiplications per sample for 
a traditional serial implementation without down-sampling 
is Mserial = o(n, m)(2 + Nlength). Thus, the ratio of down- 
sampling to traditional implementation multiplications is 

M down 
-= 

Serial 
(1 + 2n + o(n, m)(Q + P)(2 + ‘vbbandskngth) 

+ Nbands (10/3p + 1)) 

/ (D(n, m) (2 -I Nkngth)) (30) 

We may obtain an upper bound on e by assuming 
^ 

Nlength = Nlength, and a conservative lower bound by set- 

ting kngth = max{l, Nlength/Rmar} = max{l, MengthQ}. 
This lower bound is conservative since we assumed &ngth 
was independent of K when finding the optimum K. 

It is difficult to intuitively assess the relative computa- 
tional complexity directly from (30), so we offer represen- 
tative examples in which the relative computational com- 
plexity is evaluated numerically. Figures 4 a) and b) de- 
pict the upper and lower bounds on e for a third and 
fifth order kernel, respectively, as a function of memory m 
assuming several different fractional bandwidths Q. As ex- 
pected, the relative advantage of the down-sampling imple- 
mentation increases as both the memory increases and the 
fractional bandwidth decreases. The down-sampling imple- 
mentation is always advantageous for fractional bandwidths 
less than one-half and modest memory lengths. Note that 
a greater complexity reduction is obtained with the fifth or- 
der system than the third order system with small fractional 
bandwidths. 

m 

fb1 

10' n 
I , 

I 

IOOb, _______ --i&-----------g-- --------- 1 

1o-5F 1 

0 50 100 150 
m 

Figure 4: Ratio of number of multiplications of down- 
sampled implementation over serial implementation 
as function of m for several values of Q. 
o-Q=;. *-Q=$ +-Q=&-.x-Q=&. 
Solid line - Upper bound. Dashed line - Lower bound. 
a) n = 3. b) n = 5. 

for processing carrier based input signals. The diagonal 
coordinate representation expresses the output as a sum 
of linear filters applied to modified input sequences. This 
linear relationship illustrates the relationship between the 
kernels and the output spectrum. It also allows use of stan- 
dard linear filtering techniques. The efficient implementa- 
tion of systems with carrier based inputs are obtained by 
performing filtering on baseband signals. The relative com- 
putational complexity of the baseband implementation is 
proportional to the signal’s fractional bandwidth. 

A. REFERENCES 

[l] G. Lazzarin. S. Pupolin, and A. Sarti, “Nonlinearity 
compensation in digital radio systems,” IEEE Trans. 

Comm., vol. 42, pp. 988-998, 1994. 

[2] J. C. Peyton and S. A. Billings, “Describing functions, 
Volterra series, and the analysis of nonlinear systems 
in frequency domain” Int. J. Control, 1991, Vol. 53, 
no. 4, pp. 871-887. 

[3] G. M. Raz, B. D. Van Veen, “Baseband Volterra filters 
for implementing carrier based nonlinearities,” IEEE 

Trans. Signal Proc., Submitted, 1997. 

[4] A.A.M. Saleh and J. Salz, “Adaptive linearization of 
power amplifiers in digital radio systems,” Bell Syst. 

Tech. J., vol. 62, pp. 1019-1033, 1983. 

[5] M. Schetzen. The Volterra and Wiener Theories of 

Nonlinear Systems. New York: Wiley, 1980. 

4. CONCLUSIONS 

A diagonal coordinate representation for Volterra filters is 
exploited to develop efficient Volterra filter implementations 


