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ABSTRACT 

We consider causal time-invariant nonlinear input- 

output maps that take a set of bounded functions into a 
set of real-valued functions, and we give criteria under 
which these maps can be uniformly approximated arbi- 
trarily well using a certain structure consisting of a not- 

necessarily linear dynamic part followed by a nonlinear 
memoryless section that may contain sigmoids or radial 

basis functions, etc. As an application of the results, 
we show that system maps of the type addressed can 
be uniformly approximated arbitrarily well by doubly- 
finite Volterra-series approximants if and only if these 
maps have approximately-finite memory and satisfy cer- 
tain continuity conditions. Correspondingresults have 
also been obtained for (not necessary causal) multivari- 
able input-output maps. Such multivariable maps are 
of interest in connection with image processing. 

1. INTRODUCTION 

,~~ than approximation (see, for example, [10],[11],[12],[13] 

Results concerning the representation and approxi- 
mation of nonlinear maps can be of particular interest 
in connection with a variety of engineering problems. 
In [l] there began a study of the network (e.g., neural 

network) approximation of functionals and approximately- 
finite-memory maps. It was shown that large classes of 
approximately-finite-memory maps can be uniformly 

approximated (i.e., uniformly approximated arbitrar- 
ily well) by the maps of certain simple nonlinear struc- 

tures using, for example, sigmoidal nonlinearities or ra- 
dial basis functi0ns.l This is of interest in connection 
with, for example, the general problem of establish- 
ing a comprehensive analytical basis for the identifica- 
tion of dynamic systems.2 The approximntely-finite- 

memory approach in [l] is different from, but is re- 
lated to, the fading-memory approach in [6] where it is 

proved that certain scalar single-variable causal fading- 
memory systems with inputs and outputs defined on R 
or on (..., -l,O,l,...) can be approximated by a fi- 
nite Volterra series. 

The study in [l] addresses noncausal as well as causal 
systems, and also systems in which inputs and out- 
puts are functions of several variables. In recent pa- 
pers [7,8] strong corresponding results are given within 
the framework of an extension of the fading-memory 
approach. We use the term “myopic” to describe the 
maps we study because the term “fading-memory” is a 
misnomer when applied to noncausal systems, in that 
noncausal systems may anticipate as well as remember. 
Roughly speaking, an input-output map K is myopic if 
the value of (KU)(Y) is always relatively independent 
of the values of u at points remote from y. [The con- 
cepts of maps that are myopic, have approximately- 
finite memory, fading memory [6], or decaying mem- 
ory [9] are all different but are all related in that they 
are alternative ways of making precise, in different set- 
tings, the same general idea. There is also a history of 
the-use of this idea in other areas and for purposes other 

‘It was later found [2] that the approximately-finite-memory 
condition is met bv the members of a certain familiar class of 
stable continuous-time systems. 

21t was also observed that any continuous real functional on 
a compact subset of a real normed linear space can be uniformly 
approximated using only a feedforward neural network with a 

I.1 
In [8], as well as in [6, 71 and other papers, attention 

centers around properties of nonlinear approximation 
structures of the type indicated in Figure 1 in which 
the box labeled N is a memoryless nonlinear system 
and the hj denote linear maps. This is a structure 
consisting of a linear preprocessing stage followed by a 
memoryless nonlinear network. As mentioned earlier, 
such structures were first considered in an important 

linear-functional input layer and one hidden memoryless nonlin- 
ear (e.g., sigmoidal) layer. This has applications concerning, for 
instance, the theory of classification of signals, and is a kind of 
general extension of an idea due to Wiener concerning the ap- 
proximation of input-output maps using a structure consisting of 
a bank of linear maps followed by a memoryless map with several 
inputs and a single output (see, for instance, [3, pp. 380-3821). 
For related results, see [4] and [5]. 



Figure 1: Approximation structure. 

but very special context by Wiener. Roughly speak- 
ing, the main result in [8] is that, with N containing 
sigmoids, or radial basis functions, etc., a given shift- 
invariant input-output map K can be uniformly ap- 
proximated over a certain set U of inputs if and only if 

K is myopic, assuming that the linear maps represented 
by the hj satisfy certain conditions. A corresponding 
result for a different type of input set is given in [7]. 

In this paper attention is focused on the hj . We con- 
sider causal time-invariant input-output maps G that 
take a set S of bounded vector-valued functions into 

a set of real-valued functions, and we give conditions 
on the hj under which these G’s can be uniformly ap- 
proximated arbitrarily well using the structure shown 
in Figure 1. In our results certain separation condi- 

tions, of the kind associated with the Stone-Weierstrass 
theorem, play a prominent role. Here they emerge as 
criteria for approximation, and not just sufficient con- 
ditions under which an approximation exists. -4s an 

apfilication of the results, we show that system maps 
of the type addressed can be uniformly approximated 
arbitrarily well by doubly-finite Volterra-series approx- 
imants if and onZy if these maps have approximately- 
finite memory and satisfy certain continuity conditions. 
By such an approximant we mean one of the form 

D n n 
2 C . . . C kj(n-nl,..., 

j=l T&j=0 n1=0 

?I-nj)S(nl)-**S(nj) 

in which p is finite and there is a number n such that 
foreachj kj(n1T.e. , nj) vanishes if one or more of the 

n1,..., nj exceed r] (which implies that, the approxi- 
mant has finite memory). Corresponding results - not 
presented here because of length restrictions - have also 
been obtained for (not necessary causal) multivariable 
input-output maps. Such multivariable maps are of in- 
terest in connection with image processing. 

Our results are given in the next section, which be- 
gins with a section on preliminaries. As we have said, in 
these results certain separation conditions, of the kind 
associated with the Stone-Weicrstrass theorem, play a 
prominent role but here they emerge as criteria for ap- 
proximation, and not just sufficient conditions under 
which an approximation exists. In particular, a corol- 
lary of one of our main results in the next section is a 
theorem to the effect that universal approximation can 

be achieved using the structure of Figure 1 if and only if 
the set H from which the hj are drawn satisfies the sep- 
aration condition that for each n : (hul)(n) # (hua)(n) 

for some h E H whenever ~1,112 E S and ~1 (j) # 212 (j) 
for at least one j 5 71.. This holds even if the elements 
of H are not linear. For a related result in the context 
of “complete memories,” see [14] (see also [4, Theorem 

41 and [15]). 

2. APPROXIMATION OF INPUT-OUTPUT 
MAPS 

2.1. Preliminaries 

The linear-ring operations starting with a set of real 
numbers consist of the linear operations and multiplica- 
tion. That. is, these operations consist of ordinary addi- 
tion, multiplication, and multiplication by real scalars, 
with the understanding that operations may be per- 
formed only on numbers in the starting set and/or num- 
bers that have been formed from the starting set. Let k 
be a positive integer. We say that a map M : Rk + R 
is a linear-ring map if Mu is generated from the com- 
ponents vi, . . . , Vk of v by a finite number of linear ring 
operations that do not depend on v. Let L(Rk,R) 
stand for the set of all linear-ring maps from Rk to R. 
We view the elements of R” as row vectors. 

Let C(Rk, nZ) denote the set of continuous maps 
from Rk to R, and let Dk stand for any subset of 
C(R”,R) that is dense in L(R”: E2) on compact sets, 
in the sense that given c > 0 and f E L(lR”,R), as 
well as a compact K C R”, there is a g E Dk such 
that If(v) -g(T))] < 6 for v E K. The Dk can be 
chosen in many different ways, and may involve, for 

example, radial basis functions, polynomial functions, 
piecewise linear functions, sigmoids, or combinations of 
these functions.3 

Let d be a positive integer, and let C stand for any 
bounded closed subset of Rd that contains the origin 
of Rd. For example, C can be chosen to be {v E Rd : 

II4 I ~1 where II. II is any norm on Rd and y is a 
positive constant. With 2+ =: (0, 1,. . .}, let S denote 

3The term Dk is used also in, for example, [7] where the mean- 
ing is different. Here the conditions on the Dk are even less 
restrictive. 



the family of all maps s from 2+ to C. The set S is our 
set of inputs. 

For each o and /3 in 2+, let maps Wo,, : S + S 
and To : S + S be defined by 

WLw>(n) = { 
s(n), D-crlnSP 
0 

, otherwise 

and 
n<P 

(TP)(n) = { 8i72 - p), n 2 p * 

We say that a map M from S into the set of real- 
valued functions on 2+ is time-invariant if for each 

/3 E 2+ we have 

(MTps)(n) = { $fs)(n - p), 
n<P 
n 2 p 

for all s. M is causal if (Mu)(n) = (Mu)(n) whenever 

n E 2+ and u and v satisfy ~(a) = v(a) for Q 5 n. 
Throughout the paper, G denotes a causal time- 

invariant map from S to the set of real-valued functions 
defined on 2+. We assume that G has approximately- 
finite memory in the sense that given c > 0 there is an 
(Y E 2+ such that 

KG’s)(n) - (GWn,as)(n)l < 6, n E 2+ 

for s E S.4 
For each n E 2+, let cn stand for (0, 1, . . . n}, and 

let S, denote the restriction of S to cn. We view 
each S, as a metric space with metric p,, defined by 

P~(x, Y> = ma { IlxW - YWII : j E cn 1. 
Let H be a family of time-invariant causal maps h 

from S to the set of R-valued functions defined on 2+, 
and for each h and each n in 2+ define the functional 

q(h,n;) on S, by q(h,n,u) = (hs)(n), where s is any 
element of S whose restriction to c,, is u. We assume 
that q(h,n, .) is continuous for each h E H. We also 
assume that H is closed under the memory-limiting 
operation, in the sense that g defined on S by (gs)(n) = 
(hW,,,as)(n) belongs to H whenever h E H and a E 
2+.5 

As an example, we can take H to be the set HO of 
all maps h for which 

(hs)(n) = de s(Mn -d 1, nE2+ (1) 
j=O 

where 4, which depends on h, is a continuous map from 
R into R with 4(O) = 0, and a, which also depends on 

4There is a slight difference here relative to the definition of 
approximately-finite memory in [l] where (Y is required to be 
positive. 

51n this connection, it is not difficult to check that 9 defined 
above is causal and time invariant for h E H and (L E Z+. 

h, is real d x 1 matrix valued with a(j) the zero d x 1 
matrix for j sufficiently large. As another example, 
note that H can be taken to be any subset of HO that 
is closed under the memory-limiting operation. 

For each n E 2+, let F, denote the functional de- 

fined on S, by Fnu = (Gs)(n), where s is any element 
of S whose restriction to cn is u. We shall use A.1 to 
denote the following condition: 

For each n E 2+ and each (~1, ~2) E E,, there is 
an h E H such that q(h,n, ~1) # q(h,n,uz), 

in which 

J% = ((~1, ~2) E Sn x S,, : F,ul # F,u2}. 

2.2. Approximation and Discrete-Time Systems 

One of our main results is the following. 

Theorem 1: The following t,wo statements are equiv- 

alent. 

(i) For each E > 0, there are an a E 2+, a positive 
integer k, elements hl, . . . , hk of H, and an N E 
Dk such that 

I(Gs)(n) - N[(MWn,as)(n>ll < 6, n E 2+ 

for all s E S, where 

(MS)(n) = Ohs), . . . , (h&S)(n)]. 

(ii) Each F,, is continuous and A.1 is met. 

The proof makes use of the following lemma, but 
the remaining details are omitted in this version of the 
paper. 

Lemma 1: Let A be a compact topological space, 
let f belong to the set C of all continuous real-valued 
functions on A, and let B be a subset of C. Suppose 
that there is an element a of A such that f(a) = 0 and 
b(a) = 0 for b E B. Then statements 1) and 2) below 

are equivalent. 

1) For each c > 0 there are a positive integer k, 
elements bl , . . . , bk of B, and an N E Dk such 
that If(z) - N[B(x)]l < 6 for 2 E A, where 

B(x) = [(h)(x), . . . >(h)(x)]. 

‘4 For (51~x2) E {( x1,52) E A x A : f(m) # f(x2)) 

there is a b E B such that b(xl) # b(x2). 



Our next result is a corollary of Theorem 1. It fo- 

cuses attention on the conditions required of the pre- 
processing stage represented by the hj in Figure 1 so 

that universal approximation is achieved. We find that 
a separation condition is the key condition. 

Theorem 2: Let 6 be the set of all time-invariant 
causal approximately-finite-memory maps G from S to 
the set of real-valued functions on 2+ such that each 
associated functional F, is continuous. Then (i) of The- 

orem 1 holds for each G E G if and only if for every n 
the q(h, n, -) separate the points of S,. [i.e., if and only 

if q(h, 71,211) # q(h, n, ~2) for some h E H whenever 

~1, ‘112 E S, and UI # UZ]. 

The proof is omitted in this version of the paper. 

2.3 Comments 

For a given G the condition of Theorem 1 that A.1 
be met can be much less restrictive than the separation 
condition of Theorem 2. For instance, suppose that G 
is the zero map [i.e., suppose that (Gs)(n) = 0 for all 

s and n 1. Then each E, is empty and A.1 imposes no 
restrictions on H, as one would expect. 

Using the closure of H under the memory-limiting 
operation, a check of the omitted proof of Theorem 
1 shows that Statement (i) is equivalent to: For each 
6 > 0, there are a positive integer k, elements hl, . . . , hk 
of H, and an N E Dk such that 

I(Gs)(n) - NPW(n)ll < e, n E -5, 

for all s E S, where (MS)(~) = [(his)(n), . . . , (hkS)(n)]. 
The conditions of Statement (ii) of Theorem 1 can 

be expressed in other ways. For example, using the 
causality of G, it is not difficult to check that the con- 
dition that each F, is continuous is equivalent to the 
condition that each functional G(.)(n) is continuous 
with respect to the metric on S given by p(z,g) = 

sup { ]]z(j) - y(j)]] : j E 2+}. As another example, 
the statement that each each F, is continuous contains 
redundancy in the sense that, by the time-invariance of 

G, if nr and nz are elements of 2+ such that nz > nr 
then the continuity of F,,, implies the continuity of Fnl . 
Similarly, and concerning A.1 (and this time by the 
time-invariance of G and the elements of H), if the fol- 
lowing holds for n = nz and nz > nl then it holds for 
n = 711. 

For each (ui,uz) E E, there is an h E H such 

that dh, n, w) # q(h n, w), 

in which 

En = {(ul,u2) E S, x S, : Fnul # Fnu2). 

In applications it is often possible to choose H so 
that its elements are linear and A.1 is met. However, 
for a given degree of approximation (i.e., for a given 
e) a much lower overall degree of complexity of the 
approximation structure can sometimes result if H is 
allowed to contain relatively simple elements that are 
not linear. As an example of how H can be chosen, 
let Ho0 stand for the subset of HO (of Section 2.1) con- 
taining only the members for which the functions 4 are 
strictly monotone increasing. Given n as well as ‘1~1 and 
2~2 in S, such that ui # ~2, choose h E HOO, so that 
it is given by (1) with a(n - j) = (~1 - u~)(j)~’ for 
j = 1,. . . ,n. Then 

k(ul - u2)(j)u(n - A # 0 

j=O 

and so, by the strict monotonicity of the d’s, q(n, h, ~1) 
# q(n, h, 212). This shows that A.1 is always met for for 

H = Hoe. 
Now assume that H = Ho0 with the 4’s linear, and 

assume also that the Dk are linear-ring maps. Let Q 
denote the approximating map of Theorem 1 given by 
(Qs)(n) = N[(MU’,,,s)(n)], and let hi,. . . , h; be el- 
ements of H such that (hj’s)(n) = (hjW,,,s)(n) Con- 
sider the d = 1 case. By writing products of sums as 
iterated sums, it is not difficult to see that (Qs)(n) has 

the form 

f: 2 . . . 2 kj(n-nl,..., 

j=l nj=O n1=0 

n - nj)S(nl) . . . S(nj) (2) 

in which p is a positive integer, and each kj (n - n1 , . . . , 
n - nj) is a finite linear combination of products of the 

form aij c1J (n-nl)u~j~2~(n-n2)~-~u~j~j~(n-nj), where 

the indices ij(l), . . . ,ij(j) are drawn from {l,...,k} 

and each ui is the kernel (i.e., discrete impulse re- 
sponse) associated with hf. Note that each kj vanishes 

whenever one or more of its arguments exceed Q. 
Expression (2) is a doubly-finite Volterra series ap- 

proximant for G in the sense that p is finite and each 
kj vanishes if at least one of its arguments is suffi- 
ciently large in the sense indicated (which of course 
has the interpreta.tion that the approximants have f-i- 
nite memory).6 Let M stand for the set of all causal 
time-invariant maps from S to the real-valued func- 
tions defined on 2+, and let V denote the family of 
all members of M that have a representation of the 

form (2) for some p and some ICI,. . . , kP with each 

Icj(nl,***v nj) = 0 when one or more of the nr, . . . , nj 

6For early studies and other references concerning Volterra- 
series representations, see [16] and [3]. 



exceeds some number q. We have just seen that suf- 
ficient conditions for a member of M to be uniformly 
approximated arbitrarily well by an element of V are 
that the member possesses approximately-finite mem- 
ory and that its corresponding F, functionals are con- 
tinuous. In the full-length version of the paper we show 
that these conditions are in fact necessary. 

The methods we have used can be employed to 
obtain corresponding results for other types of input- 
output maps. A particularly important case is the one 
in which inputs and outputs are real-valued functions of 

a finite number of integer-valued variables. This case is 
of interest in connection with, for example, image pro- 
cessing. We consider this case in the full-length version 
of this paper where a large class of myopic maps are 
the focus of attention. As an application, we give a cri- 

teria in this multivariable setting for the existence of 
arbitrarily good doubly-finite Volterra series approxi- 
mations. 

PI 

PI 

PI 
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