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ABSTRACT
In this paper, we propose the summational projection

algorithm which has the convergence properties of high
speed and high accuracy under high noise and colored in-
put signal. We particularly discuss the adaptive algorithm
for the adaptive Volterra filter which can be used to iden-
tify and design nonlinear systems. The proposal algorithm
realizes the these convergence properties by controlling
the length of the block in the updating algorithm. First of
all, we present the general type of the proposed summa-
tional projection algorithm. Next, we show that the pro-
posal algorithm is effective in the identification of non-
linear systems. Finally, we apply the proposed algorithm to
the design method of a nonlinear inverse system.

1. Introduction
It is desirable that the distortions of transmission sys-

tems are eliminated from the viewpoint of information
transmission. The distortions of transmission systems can
be classified into linear and nonlinear distortions. Up to
now, the elimination of the linear distortion using the
linear filters has been studied [1]. However, if the linear
distortion is eliminated for the system which has nonline-
arity, the problem that the nonlinear distortion increases
occurs. Therefore, it is necessary to eliminate both the
linear and the nonlinear distortions at the same time. Re-
cently, the Volterra series expansion [2] has been applied
successfully to the analysis, design and identi~ of non-
linear systems [3-10]. In [7-10], nonlinear distortions in
loudspeakers are reduced using Volterra filter. In these
methods, we need to identify the Volterra kernels of loud-
speakers in order to reduce the nonlinear distortion of
loudspeakers. The adaptive Volterra filter [11] has widely
been used to identify the Volterra kernel. However, when
we identi~ the Volterra kernels in the actual system, we
must consider the existence of additive noise, the variation
of additive noise, and the characteristic-variation of un-
known system. On the other hand, the outputs of the sec-
ond-order Volterra filter are obtained by multiplying the
filter coefficients by the product of the input signal.
Therefore, the convergence property of the adaptive Vol-
terra filter using the LMS algorithm becomes poor. Be-

cause the product of the input signal is colored signal even
if the input signal is white signal. Consequently, the up-
dating algorithm of the adaptive Volterra filter needs to be
robust to the colored signal and the variations of environ-
ment. Therefore we propose a summational aftlne projec-
tion algorithm, which realizes the convergence properties
of high speed and high accuracy under high additive noise
and colored input signal. The proposed algorithm realizes
the these convergence properties by controlling the length
of the block in the updating algorithm.

2. The Volterra Series Expansion
Now, a discrete -time, time-invariant, and causal

nonlinear system with finite memory can be expressed by
means of an extension of the following Volterra series ex-
pansion [2].
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where x(n) is the input signal , y(n) the output signals, and
hP(kl,...,kP) the p-th order discrete Volterra kernel having

generally a symmetry. Therefore, this series is invariance
independently of the order of its terms, without loosing
generality. Referring to Eq. (l), constant hO is an offset
term (DC component), hl(kl ) is a linear impulse having a
finite length, and h,,(kl,...,kp) the p-th order impulse re-
sponse which characterizes the nonlinearity of the system.

By introducing the p-th order Volterra operator
HP[x(n)], Eq. (1) can be simplified as
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Since this paper treats the second-order nonlinear
components @=2), and assumes that all the Volterra ker-
nels have a finite memory length, Eq, (1) is rewritten as
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3. The Design Method of Nonlinear Inverse System
Fig. 1 shows the tandem connection of the nonlinear

inverse system and unknown nonlinear system,

..............................

‘m........ ............ ..........
H : Nonlinear Inverse System
D : Unknown Nonlinear System
HI : First Order Volterra Operator of H
HZ : Second Order Volterra Operator of H
D, : First Order Volterra Operator of D
Dz : Second Order Volterra Operator of D

Fig. 1 The system Q is a tandem connection of the second
order nonlinear inverse system H and the second
order unknown nonlinear system D.

Firstly, the design method of H, in Fig. 1 is explained.
It is necessary to design HI so that this eliminates the
linear distortion of an unknown nonlinear system. In other
words, it is necessary to determine HI so that the first or-
der Volterra operator Q1 of the whole system satisfies

Q,[.x(n)]=x(n). (5)

Therefore, H, can be designed to realize H1=D1-’from Eq.
(5) by the conventional inverse modeling [12].

The design method of H2 is described continuously. It
is necessary to design H2 so that this eliminates the second
order nonlinear distortion of the unknown nonlinear sys-
tem. In other words, it is necessary to determine Hz so that
the second order Volterra operator Q2 satisfies

Q,[x(n)]= 0. (6)

ra operator Q2 of the whole system.
Referring to Fig. 2, it is necessary to design H2 so that

zz(n) becomes zero; i.e. d(n) and o(n) cancel each other. To
find what form of H2 realizes Eq. (6), Fig. 2 is modified:
To erase D, in Fig. 2, relationship DIH1=z-~is used. Fig. 3
is obtained by inserting HI atler D1 and D2 in Fig. 2. Ref-
fering to Fig. 3, if

H,. Z-A=–H, D2. H, (7)

holds, the second-order Volterra operator of the whole
system satisfis Eq. (6), Therefore, Fig. 1 is replaced by Fig.
4, by putting Z-Aafter H, and Hz in Fig. 1, and applying Eq.
(7). Fig. 4 shows the final diagram. Note, a single HI is
used in Fig. 4, since H1 is commonly used for the first- and
second-order of the nonlinear inverse system. To make a
nonlinear inverse system using the structure shown in Fig.
4, a linear inverse filter H, and an unknown linear system
D2 are needed.

The procedure of construction of the system shown in
Fig. 4 is as follows:

[Process 1] D, and Dz are identified by the adaptive Vol-
terra filters;

[Process 2] A first-order (linear) inverse system HI for
identified D1 is designed by using the con-
ventional inverse modeling.
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Fig. 2 The block diagram of the second order Volterra op-
erator Q2 of the system in Fig. 1.

D2 HI
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Fig. 3 The block diagram of the second order volterra op-
erator Qz given by modifying the block diagram in
Fig. 2.
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Fig. 4 The block diagram of the construction of a nonline-
ar inverse system.

To obtain the design method of H2 which satisfies Eq. (6),
Fig. 2 shows the block diagram of the second-order Volter-



4. The Sununational Affine Projection Algorithm
We show the summational affine projection algorithm

below in the case of the system shown in Fig. 5.
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P : The order of projection.
N, : The order of projection.
N2 : The order of projection.
L : Block length.
# : Step size parameter.

v(k)
I

x(k)
Unknown System

~ y(k) -
(~ Adaptive Filter

f
I

Updating Algorithm

d(k): desired signal at k sample time
x(k): input signal at k sample time
y(k): out put signal of adaptive filter at k sample time
e(k): error signal at k sample time
v(k): additive noise at k sample time

Fig. 5 Block diagram of forward modeling using adaptive
filter.

5. The Control of Block Length
We should apply the control of block length to the

previous algorithm in order to realize the convergence
properties of high speed and high accuracy under high ad-
ditive noise. To control the block length, we use the con-
vergence parameter defined as the following equation to
the proposed method.

Ri(n)=lla(i)/s(i)112 i =1,2,...,p (18)

This convergence parameter decreases continuously until
the convergence property of the adaptive Volterra filter
reach the saturation condition and vibrates continuously in
the saturation condition (refer to Fig. 6). Consequently, we
can realize the convergence property of high speed and
high accuracy under high additive noise by adding the
following procedures to the summational aftlne projection
algorithm.

~ -701L___#o “
o 20

Iter%on [x%OO]
100

Fig. 6 Comparison between the variation characteristics of
convergence parameters and the convergence prop-
erty to the adaptive Volterra filter.

1) If R(n)SR(n- 1), the filter coefficients are updated at the
current block length.

2) If R(n)>R(n-1 ), the block length is extended continu-
ously until R(n)SR(n-1).

6. Examples and Results
The results of experiment that demonstrate the good

propeties of the summational aftlne projection algorithm
are presented in this section. Table 1 shows the experiment
condition. We compare the performance of the summa-
tional affine projection algorithm, NLMS algorithm, and
the conventional affine projection algorithm. Fig. 7 and
Fig. 8 show the convergence properties of the first and
second order adaptive Volterra filters obtained using the
above algorithms respectively. In Fig. 7 and Fig. 8, (a), (b),
and (c) are the convergence properties of the proposed al-
gorithm Q7=3), the conventional at%ne projection algo-



rithm (p=3), and the NLMS algorithm respectively. The
step size parameter p for the proposed algorithm is chosen
as 8.0. The step size parameter # for the other algorithms
is chosen as 8/1024. The initial block length h=256 and
the extension length of blcck length L~=128.

It can be seen from Fig. 7 and Fig. 8 that the proposed
algorithm developed in this paper converges significantly
faster than the NLMS Algorithm and the aftlne projection
algorithm.

Table 2 The condition of forward modeling for a nonlinear
unknown system by the adaptive Volterra filter.

Sampling Frequency 12kHz
Input Signal White Noise (5W)

Tap Length of WI 256
Tap Length of W2 ‘ 128

Step Gain p, 0.01
SteDGain M 0.01

Table 3 The design condition of a linear inverse system.
— I I

Sampling frequency F, 12kHz
Tap length of D, 256
Tap length of H, 1024

Tap length of D, 256

Inverse modeling delay A 512
Step gain p 0.1

“o 20 80 100
Iter~?on [x%O]

Fig. 7 Convergence properties of the first order adaptive
Volterra filter by the proposed method and by the
conventional methods.

“o 20 60 80 100
Ite#ion [x1OOO]

Fig. 8 Convergence properties of the second order adaptive
Volterra filter by the proposed method and by the
conventional methods.

Table 1 Experiment condition.

Tap length of unknown system
(first order)

32

Tap length of unknown system
(second order)

16

Tap length of the first order AVF 32
Tap length of the first order AVF 16

S/N between additive noise
4odB

and desired signal
Input signal White signal

Table 4 Comparison of second order nonlinear distortion
levels between before and after elimination.

Fundamental 2fi before 2A after Difference
frequencyfl elimination elimination

93.75Hz -12,26[dB] -59.33[dB] -47.07[dB]
375HZ -43.35[dB] -105.62[dB] -62.27[dB]
1125Hz -49.37[dB] -119.64[dB] -70.27[dB]
1500HZ -65.16[dB] -135.85[dB] -70.69[dB]

93.75Hz+375Hz -32.37[dB] -53.04[dB] -20.67[dB]
1125Hz+1500Hz -58.32[dBl -124.50[dBl -66. 18[dBl

Next, let us design an actual nonlinear inverse system
using the procedures described in the previous section. The
condition of the modeling of an unknown nonlinear system
in process 1 is shown in Table 2 and that of the design of a
linear inverse system in process 2 is shown in Table 3. The
modeling of the unknown nonlinear system was carried
out using the input-output data of the loudspeaker recorded
in a DAT on a computer. To estimate whether the nonline-
ar inverse system designed by the above procedures can
eliminate the second order nonlinear distortion enough, we
compare the level of the second order nonlinear distortion
in the system of Flg.4 with that in the system where the
linear inverse system is only connected to the unknown
system, when various sinusoidal waves are applied to the
two systems respectively, The results are shown in Table 4.
It is clear from Table 4 that the second order nonlinear
distortion is eliminated enough (the maximum elimination
level is about 70dB).



7. CONCLUSION
This paper proposes a surnmationl affine projection

algorithm which has the convergence properties of high
speed and high accuracy under high noise and colored in-
put signal. And this algorithm is used to the design ofa
nonlinear inverse system which makes the nonlinear sys-
tem linear. The proposed algorithm is shown to perform
better than the other alogrithm through experimental per-
formance evalution. We obtain an example of linearization
with reduction of the secondary nonlinear distortion even
by 70 dB.
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