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ABSTRACT 

We consider stability properties of discrete-time bi- 
linear filters. Simple sufficient conditions are given for 

bounded-input bounded-output stability (with not nec- 
essarily zero initial conditions), 1, stability, and three 
other important types of stability. In particular, condi- 
tions are given under which asymptotically periodic in- 

puts produce asymptotically periodic outputs with the 
same period. Related results are given for quadratic 

filters. 

1. INTRODUCTION 

Bilinear system models arise in a variety of problem 
settings in the fields of engineering, biology, and eco- 
nomics [l, 21, and it is known [3] that a large class of 
input-output maps can be realized by state-space bilin- 
ear systems. In particular, bilinear systems - together 
with natural questions concerning their advantages and 
limitations - are of current interest in connection with 
signal processing because of the limitations of linear 
filters. 

In this paper we consider the discrete-time “bilinear 

filter”, whose output y(O), y(l), . . . satisfies the differ- 
ence equation 

y(n) = 5 UdiU(72 - i) + 5 biy(7l - i)+ 
i=o i=l 

N N 

CCci,ju(n-i)y(n-j), 7220 (1) 
i=o j=l 

in which the ai, bi, and ci,j are real coefficients, U(O), 
U(l),... is the input sequence, y(-N), . . . ,y(-1) and 

4-m. . . , U( - 1) are initial values, and N is a posi- 
tive integer. The initial values and the elements of the 
input and output sequences are real numbers. In [4] it 
is shown that the input-out maps of the members of 

a large class of single-input single-output bilinear sys- 
tems described by state-space equations are governed 

by an equation of the form (1). 

There are many worthwhile questions that can be 
asked about the way in which (1) takes inputs into out- 
puts. For example, it is of interest to know conditions 
under which bounded inputs produce bounded outputs. 
One such set of conditions is given in [5], but one of the 
conditions there is that all of the initial values of the 
output are zero. In this paper we show that the condi- 
tion concerning initial values is not needed. More im- 
portantly, in Section 2 we give simple conditions under 
which (1) has the additional stability properties that 

6) 

(ii) 

(iii) 

If 15 p < 03 and the input sequence belongs to the 
set I, (see Section 2.1), then the output sequence 
also belongs to 1,. 

U(n) + 0 as n + 00 implies y(n) + 0 as n + 00. 

yl(n) - ye + 0 as n + 00 whenever ul(n) - 
UZ(~) + 0 as n + 00, where y1 is the output cor- 

responding to the input ~1, and y2 is the output 
corresponding to the input ug. 

If u is asymptotically periodic with some period 
T, by which we mean that u(n) = up(n) + uo(n) 
for n 2 0, where up(n) = uP(n + T) for n 2 0 
and uo(n) + 0 as 7~ + 00, then the output y is 
asymptotically periodic with period T. 

Related results are given in the appendix for quadratic 
filters. Results of this kind contribute to the construc- 

tion of an analytical basis for the use of nonlinear filters. 

2. BILINEAR FILTER STABILITY 
RESULTS 

2.1. Notation, Definitions, and an Assumption 

Let S denote the set of real sequences s(O), s(l), . . . . 
For 1 <p< 00, let 1, be the subset of all such sequences 



s such that CrZp=, Is(n)]” < 00. The usual 1, norm 

is denoted by ]] . 111,. We use I, to denote the set of 
bounded elements of S, and I] . ]loo stands for the usual 
sup norm. 

Let 2-l denote inverse z-transform operator de- 
fined on the set of z-transforms of z-transformable ele- 
ments of S. 

Throughout Section 2 we assume that 
(1 - CE, biz-“) # 0 for ]z] > 1. This means that we 
are assuming the stability in a standard sense of the 
system governed by (1) when ci,j = 0 for 0 5 i 5 N 
and 15 j < N. 

In our results, Theorems l-4 below: we refer to a 

set U. This set is described as follows. Given a v E S 
together with real numbers v( - N), . . . , v( - 1)) we say 
that (v,v(-N), . . . , ~(-1)) belongs to U if 

Ilhllh * SUP (2) 
k 2-N i=O j=l 

where h := 2-l { (1 - Cc, biz-“)-’ }. Of course when 

(u, 4--N), . . . , ~(-1)) E U, (2) gives a bound on the 
magnitude of the elements of the input sequence and 
the magnitude of the corresponding initial conditions. 1 

Proofs are omitted in this paper. 

2.2. Results 

In order to simplify the statement of Theorem 1 we 
define constants a and D as follows: 

a = llhllll . SUP 
k 2-N 

b@>l .e I4 + #4,. 
i=o 

N N 

suP 
k 2-N 

l”(lc)l ’ CC Icifl + llrllcc 
i=O j=l 

and 

P = llhll~1 . 

where I is the inverse z-transform of 

N i-l 

cc 
\i=l j=O 

/ 

and T = SUPk=l,...,N {lY(-~)l) 

‘h E 11 by our assumption that 

I4 2 1. 

(1 - cc1 biz-‘) # 0 for 

Theorem 1: Assume that (u,u(-N), . . . ,u(-1)) be- 
longs to U, and suppose that y(O),y(l), . . . satisfy (1). 

Then ]y(n)] 5 cr (1 - 0)-l , n 2 0. 

This theorem gives conditions under which bounded 
inputs in (1) produce bounded outputs. It tells us that 
the output is bounded whenever u E C, and 

N N 

llhllll . ll~llm . CC lci,jl < 1. 
i=O j=l 

The theorem yields the result given in [5] which con- 
cerns the case in which the initial values of the output 

are zero.2 

Theorem 2: Assume that (21,$--N), . . . ,u(-1)) be- 
longs to U, let y(O), y(l), . . . satisfy (l), and let p 2 1. 
Then u E I, implies that y E 1,. 

Now we consider the outputs that correspond to 
input sequences ui and 212 whose difference converges 
to zero. In the following theorem, Se stands for the set 
of elements of S that converge to zero. 

Theorem 3: Let sequences yi (0), yi (l), . . . and 
ys(O),yz(l), . . . be given by 

yl(n) = 2 h(n - Ic) 5 aiUl (k - i)+ 
k=O i=O 

72 N N 

C h(n - k) C C ci,jul(k - i)yl (k - j) + ~1 (n) 
k=O 

and 

i=o j=l 

y;?(n) = 2 h(n - k) caiuz(k - i)+ 
kc0 i=o 

2 h(n - k) 5 5 ci,jus(k - i)yz(k - j) + zz(n) 
k=O ix0 j=l 

for n 2 0, where (~r,ui(-N),.. .,ui(-1)) and (~2, 

4-N), . . . ,uz(-1)) belong to U, and zi,zp E SO. 
Then pi-uz(n) -+ 0 as n + 00 implies that yi(n) - 

y-~(n) + 0 as n + co. 

Regarding our bilinear system (1)) and using a re- 
lation in the omitted proof of Theorem 1, Theorem 3 
gives conditions under which the difference yi - yz of 
two output sequences converges to zero whenever the 
difference ui - uz of the two corresponding input se- 
quences converges to zero. Since y2(n) + 0 as n + 00 

‘More precisely, our theorem provides a somewhat stronger 
result even for that case. 



when uz is the zero sequence, we also have the follow- 
ing. 

Corollary : Regarding (1)) suppose that 

(u,u(-N), . . . , u( -1)) belongs to U. Then u E So im- 

plies that y E S’O.~ 

Now we consider inputs to our bilinear system (1) 
that are asymptotically periodic. Let T be a positive 
integer. 

Theorem 4: Consider (1). Suppose that 

(u,‘IL(--N), . . . , ~(-1)) belongs to U, and that u(n) = 

up(n) + uo(n), n 2 0 where up(n) = up(n + T), n 2 0 
and us(n) + 0 as n + 00. Then the output y satisfies 

y(n) = yp(n) + m(n), n 2 0 where yy(n) = yp(n + 
T), n 2 0 and ye(n) + 0 as n + co. 

In other words, when (u, u(-N), . . . , ~(-1)) belongs 
to U, asymptotically periodic inputs produce asymp- 

totically periodic outputs with the same period. 

2.3. Quadratic Filters 

The techniques used in our omitted proofs are useful 
also in connection with related problems that are “more 
nonlinear.” In particular, related results are given in 
the appendix for the discrete-time “quadratic filter” 
whose output y(O), y(l), . . . satisfies 

y(n) = 5 a&(72 - i) + 5 biY(n - i)+ 

i=o i=l 

N N 

C Cci,jY(n - Mn - j), n 2 0 (3) 
i,=l j=l 

in which the ai, bi, and ci,j are real coefficients, u(O), 

u(l), . . . is the input sequence, y(-N), . . . ,y(-1) and 

u(-N), . . . , u( -1) are initial values, and N is a positive 

integer. The initial values and the elements of the input 
and output sequences are real numbers, as in (1). In [7] 
conditions are presented under which bounded inputs 
to quadratic filters produce bounded outputs.4 There 
too it is assumed that the initial values of the out- 

put are zero. This is a significant restriction, because 
it leaves open the possibility that the filter might not 
be bounded-input bounded-out stable for even nonzero 

3Another result along these lines is this: Under the hypothe 
ses of the corollary, y(n) approaches a finite limit as n + 00 
whenever n(n) approaches a limit as n --t 00. This follows from 
a direct modification of the proof of Theorem 3, using the fact 
that the set of elements z of &, such that I approaches a limit 
is a closed subset of too. 

4There is a difference between (5) and the model in [7]. There 
oi = 0 for i > 1. We have added the additional terms because 
their presence leads to a more useful filter. 

initial values that are arbitrarily small in magnitude. 
In the appendix we show that the condition concern- 
ing initial values is not needed, in the sense that small 
values of the magnitudes of the initial conditions can 

be accommodated by making a small reduction in the 
bound on the allowed inputs. More importantly, in the 
appendix we give simple conditions (on the coefficients, 
inputs, and initial values) under which (3) has the ad- 
ditional stability properties that (ii), (iii), and (iv) of 

Section 1 are met. 
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4. APPENDIX: QUADRATIC FILTER 
STABILITY RESULTS 

4.2. Results 

4.1. Notation, Definitions, and Assumptions 

Throughout this appendix S, 11, 1,, and 2-l are 
as described in Section 2.1. 

Here too we assume that (1 - CE, b&) # 0 for 

]z] 2 1. This means that we are assuming the stability 
in a standard sense of the system governed by (3) when 
ci,j = 0 for all i and j. Also, assume that ai # 0 for 
some i and that ci,j # 0 for some i and some j. In the 
interest of simplicity later, let 

and let p be any positive number such that 

( ) 

-1 

P < llhll~l . 5 5 Ici,jl 
i=l j=l 

where h := 2-l { (1 - CEi b$-“)-‘}. 5 

Let y be any extended real number such that 
7 > 4. In two of our results, Theorems 5 and 7 below, 
we refer to sets Y and U. The set Y is the set of 

(Y(-WY * *. ,Y(-1)) such that ]]l]loo 5 a/r and 

ly(k)j 5 a /? for k = -N,. . . , -1, 

where 

{( 

N i-l 

I=z-1 cc biz-jy(j - i) * 

i=l j=O 

(I- gbiz-y}. 

The condition that (9(-N),. ..,y(-1)) E Y is satis- 
fied for any y > 4 for sufficiently small ]y( -iV)], . . . , 

IY(--111. 
The set U is described as follows. Given a r~ E S 

together with real numbers v(-N), . . . ,v(-1), we say 

that (w, v(-N), . . . , ~(-1)) belongs to U if 

SUP Iv(k)1 I (; - ;) cr:P. 
k 2-N 

Of course when (u,u(--N), . . . ,u(-1)) E U, (4) gives 
a bound on the magnitude of the elements of the in- 
put sequence and the magnitude of the corresponding 
initial conditions. 

5As in Section 2.1, h E I1 by our assumption that (1 - 

CL1 biz-‘) # 0 for 1.~1 > 1. 

Theorem 5: Assume that (u, u(-N), . . . , ~(-1)) be- 
longs to U, that. (y(-N), . . . ,y(-1)) belongs to Y, and 

that Y(%Y(~), . . . satisfies (3). Then Iv(n)] 5 f ,B for 
all n 2 0. 

This theorem gives conditions under which bounded 
inputs in (3) produce bounded outputs. 

An inspection of the omitted proof 6 shows that the 
theorem holds also if /3 is described instead by 

This is the case we have in mind in Section 2.3 in our 

comparison with the result in [7].’ 

Now we consider the outputs that correspond to 
input sequences u1 and uz whose difference converges 
to zero. In the following theorem, and as in Section 2.2, 
Se stands for the set of elements of S that converge to 

zero. 

Theorem 6: Let sequences yi (0), yi (l), . . . and yz(O), 
ys(l), . . . satisfy 

y1 (n) = 2 h(n - k) 5 a+~ (k - i) + 
k=O i=o 

R N N 

c h(n - k) c c Ci,jYl (k - i)y1(k - j) + 
k=O i=l j=l 

a(n), 72 2 0 (5) 

and 

n N 

y2(n) = c h(n - k) c w2@ - i) + 

k=O i=O 

2 h(n - k) 5 5 ci,jy2(k - ~)YYz(~ - j) + 
k=O i=l j=l 

where zl,zz E So and ]yi(n)] 5 i /3 for all n 2 -N and 
i = 1,2. Then ~1 (n) - us(n) + 0 as n + 00 implies 

that yi(n) - yn(n) + 0 as n + 00. 

Regarding our system (3), and using a relation in 
the omitted proof of Theorem 5, Theorem 6 (together 

6Proofs of the theorems in this appendix are given in [6]. 
7We have a somewhat stronger result even for the 7 = co case 

(in which the initial values of the output are assumed to be zero). 



with Theorem 5) gives conditions under which the dif- 

ference yi - y2 of two output sequences converges to 
zero whenever the difference ui - 2~2 of the two corre- 
sponding input sequences converges to zero. 

A proof similar to the proof of Theorem 6 given 

in [S] establishes that y in (5) belongs to SO when ‘1~ E 

~~i~~~(-N), . . . , u( -1)) belongs to U and 

“7 Y(-1)) E y. 
Now’we consider inputs to our system (3) that are 

asymptotically periodic. Let T be a positive integer. 

Theorem 7: Consider (3). Suppose that (u, u(-N), 

. . . ,u(-1)) belongs to U, that (y(-N), . . . ,y(-1)) be- 
longs to Y, and that u(n) = ~~(n)+uc(n), n 2 0 where 
up(n) = uP(n + T), n 2 0 and uc(n) + 0 as n + 00. 
Then the output y satisfies y(n) = yp(n)+yc(n), n 2 0 
where yp(n) = yp(n + T), n 2 0 and ye(n) + 0 as 
n + 03. 

In other words, when (u, u( - N), . . . , U( - 1)) belongs 

to U and (y(-N), . . . , y( -1)) belongs to Y, asymptot- 

ically periodic inputs produce asymptotically periodic 
outputs with the same period. 


