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ABSTRACT 

This paper presents two theorems for the exact in- 
version and the pth order inversion of a wide class of 
causal, discrete-time, nonlinear systems. The nonlinear 
systems we consider are described by the input-output 
relationship y(n) = g[~(n)] + j[~(n - l), y(n - l)], 
where g[.] and f[., .] are causal, discrete-time and non- 

linear operators and the inverse function g-l[.] exists. 
The exact inverse of such systems is given by z(n) = 
g-l [u(n) - f[~(n - l), u(n - I)]]. Similarly, thepth or- 

der inverse is given by z(n) = gF1 [u(n) - f[z(n - 

l), u(n - 1)]1 where g;l [ . ] is the pth order inverse 

ofg[ .I. ’ 

1. INTRODUCTION 

Inversion of nonlinear systems is not a trivial task in 
most situations. Not all nonlinear systems possess an 
inverse and many nonlinear systems admit an inverse 
only for a certain subset of input signals. For these 
reasons, Schetzen has developed the theory of the pth 
order inverse of a nonlinear system whose input-output 
relation can be represented using Volterra series ex- 

pansions [7], [8]. The pth order inverse of a nonlinear 
system H is defined as the pth order system which, 
connected in cascade with H, results in a system whose 

Volterra kernels from the second up to the pth order are 
zero. A pth order system is one in which all the Volterra 
kernels of order greater than p are zero. The definition 
of the pth order inverse was relaxed in [6] by allowing 
the inverse system to possess non-zero Volterra opera- 
tors of order greater than p. These operators do not af- 
fect the first p Volterra operators of the cascade system 
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and in [S] they arc used in order to derive more sim- 

ple and computationally efficient expressions for the 
inverse system. However, because of the presence of 
higher order components, the definition of the pth or- 
der inverse in [6] does not result in a unique inverse 

system. Both the approaches of [6] and [7] lead to the 
same result for the existence and the stability of the 
pth order inverse. If the linear part (i.e. the first order 
Volterra kernel) of the system H admit a Bounded In- 
put Bounded Output stable inverse, then the pth order 
inverse exists, it is BIB0 stable and it depends only 
from the first p Volterra operators of H. In this paper, 

we accept the instability or the input dependent stabil- 
ity of the resulting system in order to obtain the exact 
inverse of a particular class of discrete-time causal non- 
linear systems. The systems we are interested in are 

described by the following input-output relationship: 

Y(n) = s[44] + f [+ - l), Y(” - l)] (1) 

where g[.] and f[.! .] are discrete-time causal nonlinear 
operators. Our main contribution is the derivation of 
an expression for the exact inverse of the class of sys- 
tems described by (1). The exact inverse of the system 
in (1) may not exist or may not be stable for certain in- 

put signals. However, even if the exact inverse cannot 
be trivially derived, a more efficient realization of the 

pth order inverse may be obtained. The efficient real- 
ization we propose is derived by the use of a nonlinear 
feedback. 

The rest of this paper is organized as follows. The 
inverse of the system in (1) is introduced in Section 2. 
An efficient pth order inverse is derived in Section 3. 
Section 4 presents some experimental results that con- 
firm the usefulness of these inversion theorems. Con- 
cluding remarks regarding the stability of the filters 
that results from t.he inversion procedure are discussed 

in Section 5. 



2. THE INVERSE OF CERTAIN 
NONLINEAR SYSTEMS 

In all our discussions we assume causal signals, i.e., all 
the signals are identically zero for time indices less than 

zero. The following theorem show how t,o evaluate the 
exact inverse of the system in (1). 

Theorem 1 Let g[.] and f [., .] be causal nonlinear dis- 

crete operators and let the inverse operator g-‘[.I exist. 

Then, the system described by the input-output rela- 

tionship 

z(e) = g-l [u(n) - f[t(n - l), u(7I - l)]] (2) 

is the exact inverse of the system in (I). 

Proof: We demonstrate first that the system in (2) is 
the post-inverse of (l), i.e., a cascade interconnection of 

the system in (1) followed by the system in (2) results 
in an identity system. We proceed by mathematical 
induction. Let x(n) and y(n) represents the input and 
output signals, respectively, of the system in (1). To 
prove the theorem using induction, we assume that 

z(n - i) = x(n - i) Vi > 0. (3) 

We must now show using (3) that 

%(rz) =x(n) (4) 

when u(k) = y(k) for IZ 5 n. Now, 

z(n) = 9-l [y(n) - f[4n - l), Y(" - l>]] 

= 9-l [g[dn)] + f[x(n - l), Y(n - I)]+ 

-f[z(n - 1L Y(" - l>]] . 

(5) 
By .substituting ~(n - i) = ~(n - i) from (3) into (5), it 

follows in a straightforward manner that z(n) = s(n). 
We can prove in a similar manner that the system in (2) 

is also the pre-inverse of the system in (l), i.e., a cas- 
cade interconnection of the system in (2) followed by 
t.he system in (1) results in an identity system. This 

completes the proof. 

Example 1: The inverse of the bilinear system 

N-l N-l 

y(n) = x(n) + c aix(n - i) + c biy(n - i>+ 
i=l i=l 

N-l N-l 

C C cijX(n - i)y(n - j) 
i=l j=l 

(6) 

is the bilinear system 

N-l N-l 

z(n) = u(n) - c b;u(n - i) - c aiz(n - i)+ 
i=l i=l 

N-l N-l 

- C C Cij%(n - i)u(n - j). 

i=l j=l 

(7) 

3. pTH ORDER INVERSES 

Since the inverse system g-l[.] of Theorem 1 may not 
always exist or may not be easy to derive, we now con- 
sider the existence of the pth order inverses of the same 

class of systems as before. 

Theorem 2 Let g[.] and f[., .] be causal discrete-time 

nonlinear operators with convergent Volterra series ex- 

pansion with respect to all the arguments. Moreover, 

let the pth order inverse g;‘[.] of the system g[.] exist. 

Then a pth order inverse of the causal discrete-time 

nonlinear system described in (1) is given by the fol- 

lowing input-output relationship 

z(n) = s,’ [u(n) - f [4n - l),u(n - l)]]. (8) 

Proof: As was the case for Theorem 1, we first show 

that the system in (8) is the pth order post-inverse of 

the system in (1). Using the same variables as in the 
derivation of Theorem 1, we express .z(n) as 

%(n) = g,’ [y(n) - f [4n - I), Y(” - 1111 

= s,’ [&(n)] + f [+ - 1)1 Y(” - 111 + 

-f [4, - 11, Y(” - l,]] . (9) 

We proceed by mathematical induction. We assume 
that, for any i greater than zero, the output z(n - i) 
differs from ~(,n - i) only by TP(n - i), a term whose 
Volterra series expansion in z(n) contains only kernels 
of order larger than p, i.e., 

z(n - i) = x(n - i) + Tp(n - i) Vi > 0. (10) 

We have to prove that the Volterra series expansion of 
z(n) - x(n) have zero kernels of order up to p. Since 
f [., .] admits a convergent Volterra series expansion, we 
have from (10) that the Volterra series expansion of the 
difference f [z(n - l), y(n - I)] - f [z(n - l), y(n - l)] 
contains only kernels of order greater than p, i.e., 

f[4n-l),y(n-l)] -f[4n--l),y(n-l)] = O+Ti(n), 
(11) 



where the Volterra kernels of T;(n) up to order p are contains only the second through pth order Volterra 
zero. Substituting (11) in (9), we get kernels. 

44 = g;l [d4n)l+ qW] (12) 

The pth order inverse of the operator g[.] derived in [7] 
is given by a pth order truncated Volterra series whose 
kernels depend only on the first p kernels of the Volterra 

series expansion of g[.]. The pth order inverse derived 
in [6] may have Volterra kernels of order greater than p. 

However, the inverse still has a Volterra series expan- 
sion with finite order of nonlinearity, and it depends 

only on the first p kernels of the Volterra series ex- 

pansion of g[.]. C onsequently, it immediately follows 

from (12) that 

t.(n) = x(n) + q(n) (13) 

and that the system in (8) is the pth order post-inverse 
of the system in (1). We can prove in a similar manner 
that it is also a pre-inverse of the system in (1). 

Example 2: We wish to derive a pth order inverse for 
the second order Volterra filter given by the following 
expression: 

The computational cost expressed in multiplications 

for the evaluation of (17) is 2(N - 1) + v + (N + 
2)(p- 1). The corresponding computational cost for di- 

rectly computing the pth order inverse of (14) as in [6] 

isN+ 2N+y) 
( 

(p - 1). If the order p is greater 

than two the computational advantage of using (17) be- 
comes evident. Implementing (17) has computational 
cost of O(N2 + pN) multiplications while the method 
in [6] requires O(N*p) multiplications. In general, if we 
want to derive a pth order inverse for a Volterra filter 
of order q, the methodology suggested by Theorem 2 
is more convenient when p is greater than q. On the 

other hand, when p < q only the first p Volterra oper- 
ators are significant for the evaluation of the pth order 
inverse. In this situation, both methods of inversion 
require almost the same number of multiplications for 
computing each output sample. 

4. AN EXPERIMENTAL RESULT 

N-l N-l N-l 

We consider the pth order inversion of the second order 
Volterra filter with input-output, relationship 

y(n) = c UjX(rl - i) + c c bij+l - +o - j). 

Let 

i=o d=O j=i 

(14 

N-l 

g[x(n)] = &X(n) + X(n) C bOjxCn - -9 (15) 
j=O 

and 

N-l N-l N-l 

f[Z(rZ-1)] = g ai+-i)+C c +(n-+++). 
i=l j=i 

(16) 
According to Theorem 2, a pth order inverse of (14) is 

z(n) = -’ [U(7l,)-~Uj*(7I-i)+ Qp 

N-l N-l (17) 

i=l j=i 
1 

The pth order inverse g;‘[.] can be computed itera- 
tively as in [6] and is given by 

s,’ [44] = 4 [%I [s;J, [4411 - 441 Y (18) 

where gl’[.] is the inverse of the first Volterra opera- 
tor of g[.] (i.e., ai1 in our case) and qP[.] is the trun- 
cated Volterra series expansion of the system g[.] that 

y(n) = x(n) - x(n - 1) - O.l25z(n - 2)+ 

0.31254n - 3) +x”(n) - 0.3z(n)z(n - 1)+ 

0.2z(n)z(n - 2) - 0.5x(,)x(, - 3)+ 

0.5zyn - 1) - 0.34n - l)z(n - 2)+ 

-0.64~1 - l)z(n - 3) - 0.6x2(n - 2)+ 

0.5z(n - 2)x(?& - 3) - O.lz2(n - 3). 

(19) 
The pth order inverse derived applying Theorem 2, 
where g;’ [.I is computed as in [6], is compared with the 
pth order inverse obtained by directly using the method 

in [6]. In Figure 1 the points identified with o refer to 
the pth order inverse of the Theorem 2, while the points 
indicated with + refer to the pth order inverse of [6]. 

The plots in Figure la compare the computational cost 
in multiplications for different orders p of the inversion. 
The computational efficiency of the pth order inverse 

of Theorem 2 over the inverse suggested in [6] can be 
clearly seen in this figure. Figures lb and lc displays 
the mean-squared error (MSE) between the input sig- 
nal of the system in (19) and the output of its pth order 
inverse when connected in cascade to the system. The 
input signal was white and Gaussian-distributed with 
zero mean value. Figure lb presents the MSE in the 
reconstruction of the input for different values of the 
inverse filter order p when the standard deviation of 
the input signal was 0.05. Figure lc shows the mean- 
square error values for different standard deviations of 
the input signal for a fifth-order inverse system. All 

the results presented are time averages of 1,000 sam- 
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Figure 1: Experimental Results. 
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ples of the ensemble averages computed over fifty in- 
dependent experiments. Values of the standard devi- 
ations for which a corresponding MSE value is absent 
correspond to instability situations. We can see that 
our approach give the similar or better performances 

as the method in [6] till instability arises in the inverse 
system. In such situations, the performance of the pth 
order inverse of [6] are also unacceptable. 

[4] J.Lee, V.J.Mathews, “A Stability Result for RLS 
Adaptive Bilinear Filters,” IEEE Signal Processing 

Letters, Vol.1, No.12, Dec. 1994, pp.191-193. 

[5] E.Mumolo, A.Carini, “A Stability Condition for 
Adaptive Recursive Second-Order Polynomial Fil- 

ters,” Signal Processing, Vol.54, No.1, Oct. 1996, 
pp.85-90. 

5. CONCLUDING REMARKS 

This paper presented two theorems for the exact inverse 
and the pth order inverse of a wide class of discrete- 
time nonlinear systems. As in the linear case, even 
if a nonlinear system is BIB0 stable its inverse sys- 
tem may be unstable. The inverse systems we consider 
in this paper are in most cases recursive nonlinear fil- 

ters and therefore may possess poor stability proper- 
ties. Consequently, the stability of such systems must 
be tested after the inversion of the filter. Stability of 
recursive nonlinear systems is still a topic of active re- 

search. Some useful results for the stability of recursive 
polynomial filters can be found in [l, 2, 3, 4, 5, 91. 
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