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ABSTRACT 

In [l] a methodology for incorporating extracted MRI 
anatomical boundary information into penalized likeli- 
hood (PL) ECT image reconstructions and tracer up- 

take estimation was proposed. This methodology used 
quadratic penalty based on Gibbs weights which enforced 
smoothness constraints everywhere in the image except 
across the MRI-extracted boundary of the ROI. When 

high quality estimates of the anatomical boundary are 
available and MRI and ECT images are perfectly regis- 
tered, the performance of this method was shown to be 

very close to that attainable using ideal side information, 
i.e. noiseless anatomical boundary estimates. However 
when the variance of the MRI-extracted boundary esti- 
mates becomes significant this penalty function method 
performs poorly. We give a modified Gibbs penalty func- 
tion implemented with a set of averaged Gibbs weights, 
where the averaging is performed with respect to a limit- 
ing form of the posterior distribution of the MRI bound- 

ary parameters. 

1. INTRODUCTION 

Radio-tracer uptake estimation is an essential tool in 
medicine and biological sciences for evaluating metabolic 
function of living systems. Emission computed tomogra- 
phy (ECT) is very useful in this regard due to its ability 

to image in three dimensions. Critical to uptake esti- 
mation accuracy is a reliable estimate of the anatomical 

region of interest (ROI), e.g. a target organ within the 
body. While it is possible to estimate the ROI directly 
from the acquired radio-isotope image, better estimates 
can be obtained from higher resolution imaging systems, 
such as X-ray computed tomgraphy (CT) or magnetic 

resonance images (MRI), which are specifically adapted 
to imaging anatomy. Many researchers have suggested 
ways to incorporate such MRI or CT side information 
into ECT image reconstructions and tracer uptake esti- 

mates [2, 3, 4, 5, 6, 71. H ere we present a method for 
using noisy MRI side information in ECT which is based 
on asymptotic marginalization of the penalty likelihood 
method proposed in [8, 11. 
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The method of [9, 8, l] performs ECT image recon- 
strion using a penalized (Poisson) likelihood function ap- 
proach. A quadratic penalty based on Gibbs weights 
is introduced which enforces smoothness constraints ev- 
erywhere in the image except across the MRI-extracted 

boundary of the ROI. When high quality estimates of the 
anatomical boundary are available and MRI and ECT 

images are perfectly registered, the performance of this 
method was shown [9] to be very close to that attain- 
able using ideal side information, i.e. noiseless anatom- 
ical boundary estimates. However when the variance 
of the MRI-extracted boundary estimates becomes sig- 

nificant this penalty function method performs poorly. 
This poor performance is due in large part to the fact 
that the Gibbs weights do not account for estimation 
errors in the anatomical boundary estimates. In [lo] a 
technique called “variance corrected weighting” was pro- 
posed which relied on a local Taylor series expansion of 
the Gibbs weights about the estimated spline parame- 
ters. This scheme applies only to weight assignments 
that are smooth functions of the spline parameters for 

which Taylor series can be applied. Furt.hermore, even 
for the smooth weight assignments presented in [lo] the 
method is accurate only when the uncertainty in the ex- 
tracted boundary estimates are less than a single MRI 
pixel width. 

Here we derive a variance corrected weighting which 
applies globally to non-smooth weights. The method is 
based on marginalization [ll, Set 3.2.21 which averages 
the penalized likelihood over an asymptotic normal ap- 
proximation to the posterior distribution of the side in- 
formation. Jensen’s inequality provides a lower bound 
on the resultant marginal which gives a simple penalty 

function requiring averaging of the weight maps. This 
averaging is performed with respect to the asymptotic 
distribution of the boundary estimates which is a mul- 
tivariate Gaussian density centered at the boundary es- 

timate {+4l~~p~2~1 and with covariance matrix equal to 
the inverse (observed) Fisher information. 

2. BACKGROUND 

Let YE and YM be two random measurements corre- 
sponding to (Poisson) ECT projections and (Gaussian) 



NMR spin density images, respectively. In [lo] two differ- 
ent metShodologies were proposed for extracting anatom- 
ical boundary estimates from noisy MRI images for the 
purpose of incorporation into ECT. One was based on 
non-linear maximum likelihood estimation of coefficients 

0 in a periodic B-spline model for the closed boundary. 
The other was based on direct estimation of the bound- 

ary defined by the radial distance function r(4), qt E 

[0,27r] which specifies the (polar) coordinates (r, 4) of the 
boundary relative to an origin defined within the ROI. 

This latter method performed a polar to rectangular co- 
ordinate conversion, Canny or Marr-Hildreth edge detec- 
tion, followed by smoothing of the extracted edge by a 
median filter. It was observed through simulations that 
both boundary extraction methdologies yielded bound- 
ary estimates which were approximately unbiased over a 
wide range of SNR. The Fisher information matrix was 
derived and it was observed that the methods also came 

close to the CR lower bound on attainable estimator vari- 
ance for low to moderate additive noise levels (a, less 

than 15% of edge contrast). 

The boundary estimates, which are denoted by com- 
mon notation 8 for spline coefficient parameterization 
or for radial distance parameterization, are incorporated 
into ECT image reconstruction via maximizing the pe- 
nalized likelihood (PL) objective over the ECT intensity 
distribution X 

When ,B is known exactly, the posterior mode (MAP) 

estimate X of X maximizes the posterior loglikelihood 
lnf(XIYE, S) which is equivalent to maximizing the ob- 
jective 

JO(~) = lnf(YElX,ti) + lnf(X18). 

Comparing this to (1) we can identify f(xl13) as a Gaus- 
sian “Gibbs-type” distribution of X: 

f(AlS) = aexp {-/3R(x; 0)) 

where (Y is a norrnalizing constant. 
When 8 is not known exactly there are several ways 

to approach the estimation of X. Many researchers [2, 3, 
4, 5] have investigated joint estimation of A and 0 under 
various models for the prior J(0) and f(xle). While this 
is a.n important task for applications where both X and 0 
are of intrinsic interest, this approach does not generally 
yield Bayes optimal estimates of X which are given by the 
posterior mode estimator of X obtained by marginalizing 
f(x, 0lYE, YM) by integrating out 0. 

For random unknown 0 the posterior mode estimate 

of X maximizes the posterior ~(XIYE, YM) which is equiv- 
alent to maximizing the following joint density function 
over A: 

f(h YE, YM) = 
J 

f(&YErtYM)do 

= f(YEp) . f(yd . / f(w?f(wM )de 

J(x) = h f(YE IA, 8) - ,8R(& d) (1) 

where ~(YEIX) is the ECT likelihood function in which 

the penalty function R(X;8) depends on the MRI mea- 
surements and is specified to enforce smoothness within 

the estimated boundary of the ROI. The penalty is of 
the form of a Gibbs potential function 

R(X;B) = -pCW;j(d)(Ai - Xj)2 
ii 

where wij are Gibbs weights which depend on d through 
one of many possible functional assignments [lo: Ch. 41. 

3. A BAYESIAN SETTING 

Assume that X and 0 are random parameters (ECT inten- 
sity and MRI boundary estimates). Under the assump- 

tion that YM and YE are conditionally independent given 
X, and that A is a function of 8, the joint, density density 
function factors in the following manner: 

The first three factors on the right hand side of the above 
equation can be recognized as the likelihood function of X 

without side information, the conditional density linking 
0 to A, and the posterior density of 0 given YM. 

= ln f(YEiA) + In 
I 

f(w%f(~iYM jde 

Using the Gibbs conditional distribution (3) for f(xl0) 

this becomes 

j = (4: 

argmaxx lnf(YElX) + In 
J 

exP {-m(k e)) f(wM)de 

This is of the form of a penalized likelihood estimator (1) 
where the penalty is obtained by taking the log of the 
f(eIYM)-averaged exponentiated Gibbs penalty function. 
This penalty is convex in J and for piecewise constant 
(0, 1) weights wij can be expressed as: 

h 
J 

eXP {-PR(& 6)) f(elYM)d 

= 1nxeXP {-m(h e?)) / f(wM)de@) 

1 @I 

where {01}1 is a partition of R!’ into sets over which 
R(X; 0) is constant and 0, is a point within the set 0,. 

4. SIMPLIFICATION BY JENSENS 
INEQUALITY 

Because of the exponential form of the average in 4) or 

(5) the computation of the penalty function is numeri- 
cally unstable for even moderate values of the smoothing 



constant /3. A simplification to (4) can be made by ap- 
plying Jensen’s inequality to lower bound this penalty 

term 

In 
I 

exP {-P&v 0)) f(wM)de 

ij 

where EslyM denotes expectation with respect to the 
posterior density f(e]YM) and r&j = Eoly,[wij(e)] are 
average weights. Therefore, use of the simpler penalty 
-PE,lYMIR(X; e)] instead of In S exp {-/3R(X; e)) f(qYM)dfl 

entails an overall reduction in the influence of the penalty 
factor for any given /3. However, it is likely that the un- 

derpenalization can be be compensated by increasing the 
value of p. 

The computation of the penalty requires averaging 

over a posterior density f(e]YM) which requires knowing 
the prior distribution f(e). When multiple realizations 
of ~(YM, 0) are available empirical Bayes techniques can 
be used to accurately estimate the posterior density. Em- 
pirical Bayes techniques were formalized by Robbins [12] 
as a methodology for dealing with uncertain parameters. 
Empirical Bayes results in the substitution of an empiri- 

cally determined distribution for the unknown prior dis- 
tribution required for Bayes parameter estimation, e.g. 
the conditional mean or the posterior mode (maximum 

a posteriori) estimators. Another technique that elimi- 

nates the need for an explicit prior f(O) are use of asymp- 
totic approximations to f(eIYM). 

‘5. ASYMPTOTIC MARGINALIZATION 

Let 8 = argma+f(YM]O) be the maximum likelihood 
estimate of 0 based on YM. We now state the following 

limit theorem which can be shown using techniques of 
[13], and [14, Sets 12.4 and 17.71. 

Theorem 1 Assume that f(Y~(8) is a smooth function 

of 0 in the sense of satisfying the regularity conditions 

[13, p. 1311 and that f(6’) is a smooth function in the 

neighborhood of 6. Then 8 is an asymptotically consistent 

estimator of 0 E W’ and 

This theorem gives an asymptotic Gaussian form for 
the posterior f(YMle) which depends on the estimate e 

and the observed Fisher information at 8 but is indepen- 
dent of the explicit form of the prior density f(0). This 
form is identical to the profile posterior approximation 
proposed in [15] when the joint distribution is specialized 
to the factorization (2). In some cases it is reasonable 

to use the (expected) Fisher information in place of F. 

In particular F(8) can be approximated by the Fisher 

information evaluated at 6 [16]: 

Ii = - 
s 

f(YIMle)o~inf(Y~Ie)dYMI,=g. 

6. BACK TO PENALIZED LIKELIHOOD 

Application of the above results gives the following form 
for the variance compensated penalized likelihood esti- 
mator 

i = argmaxx In f(YE(X) - DCWij(6)(Ji - Xj)” (6) 

ij 

where 

Note that the weight averaging corresponds to consider- 
ing 0 as a p-variate Gaussian random vector with mean 

e^ and covariance matrix F-’ and 4(cr,. . . , xP) is the 
standard p-dimensional Gaissian density function with 
zero mean and identity covariance. This average is over 
the the posterior uncertainty region of 0. 

For the binary weight scheme the computation of Gdj 
can be performed directly in the pixel domain by averag- 

ing the weight map over all perturbations of f3 which pro- 
duce changes in the boundary by at least a single pixel. 
Since this average may be difficult, it may be better to 
use the reparametrization wij(8) = wij(i, v), where i, v 
index the locations of the boundary in polar coordinates, 
and do the averaging in the pixel domain 

ii?ij(ti) = (7) 

-. f, v)exp { -i(r - P)TF~(r - i)} 

IF,-1; 
f(wd = -* (&jp exp 

{-)(e - iyF,-(e - 8)) (1+ O(A”)) where the sum is over the variation of radii r4 which 
give rise to different weight maps and Fz denotes the 

where Fi is the observed Fisher information matrix 
pseudo-inverse F+ : 

F,- = -Vi ln f(YM 18) 

Ft = BF,BT. 

and O(A2) decays to zero faster than A2 = IlO - 8112. 
As a practical approximation, the sum is truncated by 

extracting p principle components (1, . . . , tp (eigenvalues 



ordered in increasing rank Xi 5 X2 5 .) from the eigen- 
decomposition of F,- and summing over the variations in 

(~-i)~& which: i) p ro uce changes in the weight maps; d 
ii) have magnitude changes over range: ](r-i.)T<i I2 5 e, 
i=l ,“‘I p. This will cover a range of changes in T which 
will account for the majority of the mass in the averaging 
distribution (plus or minus 3 standard deviations from 

the mean). 

7. APPLICATION TO SPECT/MRI 

Here we consider the situation treated in [9] where MRI- 
derived anatomical side information is applied to SPECT 
through the Gibbs weights Wi,j, We compare recon- 
structed images using side information averaged “smoothed 

weights” 221ij and the “unsmoothed weights” tijij extracted 
directly from the MRI image. A modified version of the 
SAGE3 algorithm [17] was used to maximize the penal- 
ized likelihood (6). The MRI anatomical boundary esti- 
mates were obtained by edge detection and median fil- 

tering algorithm discussed in [9]. We have shown that 
the mean-square error of this edge extraction algorithm 

virtually achieves the CR bound over the practical range 
of MRI signal-to-noise ratios. This allows us to use an 
analytical form of the Fisher information, derived in [18], 
in the smoothing formula (7). 

The ROI boundary was a quadratic spline with K = 
16 equispaced knots which is a least. squares fit to an 
ellipse wit,h major axis 5 pixels and minor axis 3 pixels 
located at (-10,O) pixels relative to image center. The 
contrast for both the MRI and ECT mean images were 
identical: for MRI the mean intensity inside the ROI 

was 6 in a zero mean background while for ECT the 
mean intensity inside the ROI was 9 in a background 

of mean 3. In both ECT and MRI images each bound- 
ary pixel was assigned mean intensity equal to the inte- 
rior mean intensity times the fraction of the boundary 

pixel included inside the ROI. The MRI spatial blurring 
width was equal to 6, = 0.75 (approximately 19% of av- 
erage ROI radius) and a spatially independent Gaussian 
noise was added having zero mean and standard devia- 

tion u, = 0.18 (appoximately 3% of contrast). The ECT 
data was sampled by a parallel beam tomograph corre- 

sponding to PET projections over 64 radial bins, and 
60 equispaced projection angles over 180”. Poisson noise 
was added to the ECT data by generating lo6 Poisson re- 
alizations of t.he mean intensity and adding 15% random 

coincidences. 
Figure 1 and 2 shows the true SPECT phantom and 

the SAGE3 reconstruction with no MRI boundary in- 
formation. Note that without the benefit of MRI side 
information the smoothing penalty is spatially invari- 
ant and therefore the hot spot (small white ellipse) is 
smoothed into the surrounding anatomy. Figure 3 shows 
the SAGE3 presented in [9] which uses weights derived 
from the MRI boundary estimate. While the hot spot 

boundary is sharp in this unsmoothed image it is of ir- 
regular shape and underestimates the upt.ake of the t,rua 
hot spot. Figure 4 shows the SAGE3 reconstruction us- 
ing the smoothed weights and Figure 5 shows the result 
of incorporating a leakage-prevention boundary into 7Zdj. 
The leakage-prevention hard limits tZij to 0 at the 98 
percentile of t.he radial boundary uncertainty distribu- 

tion (determined from Fisher information and the poste- 
rior boundary density). This preserves overall intensity 
level within the hot spot region and lowers the bias of 
the uptake estimate. 

Figure 1: True noiseless phantom for SPECT and MRI 
data. 

Figure 2: SPECT reconstruction without any side infor- 
mation for /3 = 1 for SPECT and MRI data. 
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