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ABSTRACT 

The Bayesian approach has been proven to give a 
common estimation structure to existing image recon- 
struction and restoration methods 111. The goal of this 
paper is to investigate diffraction tomography in this 
framework. A regularized solution to this nonlinear in- 
verse problem is defined as the maximum a posterdon’ 
estimate, introducing prior information on the object 
to be reconstructed. Two equivalent formulations of 
this definition are proposed which lead to solution of 
a constrained or an unconstrained optimization prob- 
lem. From this point of view, we propose a clsssifica- 
tion of existing methods for solving this problem and 
new orientations to compute the defined solution. 

Introduction 
Diffraction tomography (DT) consists in constructing 
an image representing the spatial variation of some 
physical properties of an inhomogeneous object (such 
as dielectric permittivity and conductivity for electro- 
magnetic waves), from a data set of field scattered 
by this object. In addition to its ill-posedness, the 
characteristic of this problem is given by its nonlinear 
object/data relation. The objectives of this paper arc 
i) to define a regularized solution to this nonlinear in- 
verse problem in the Bayesian estimation framework; 
ii) to propose a classification of some of the existing 
methods as algorithms to compute the defined solu- 
tion; iii) to propose new orientations and algorithms 
for this computation in each distinguished class. 

After a brief presentation of the direct problem 
model, we define a regularized solution in the Baye- 
Sian estimation framework. The maximum o posteri- 
ori estimate is considered, so the solution’s computa- 
tion requires to solve an optimization problem. 

Then a classification of existing methods to solve 
the DT problem is proposed. We have distinguished 
three classes of methods: the first consider successive 
linearizations of the direct model, the second define 
the solution as the minimum of a joint criterion de- 
pending both on the object and on the field in the 
object, the third minimize a criterion which only de- 
pends on the object. For each of these classes, we 
briefly describe the methods’ principles and we pro- 
pose new orientations to compute the defined regular- 
ized solution. 

1. PROBLEM STATEMENT 

We consider an inhomogeneous 2-D object, embedded 
in a known background medium, illuminated with a 
pure harmonic Transverse Magnetic plane wave. The 

object is characterized by its complex contrast func- 
tion z(r),r E lRz which is directly related to the di- 
electric permittivity and the conductivity of the ob- 
ject. The direct scattering problem is modeled by the 
coupled integral equations: 

Y(C) = G(ri, r’) x(r') 9(r’) dr’, ri l Dar, 

where y(ri), ri E D~I is the scattered field on a sensor 
located at ri in the measurement area Dhl, 4(r)! r E 
Do and &(r), r E DO are’ the total and the incident 
field in the object area Do, and P is the Green function 
for the known background medium. 

From an algebraic viewpoint, discretization of these 
equations with a moment method, leads to: 

Y = GMX~, (1) 

4 = &,+‘&X$J, (2) 

where 9 E C”“, 4 E C”‘, $,, E P, X is a diagonal 
matrix (no x no) with the components of the vector 
2 E CR0 as diagonal elements, no is the number of 
pixels of the discrete object and nli is the number of 
measurement sensors. Note that these notations can 
be extended for emission from ns different positions. 

Formally, the total field C#J in the object can be 
expressed from (2) and introduced in (1). It gives an 
explicit relation between the contrast and the data 
9 = d(z) with: 

d(x) = GnX (I - G”X)-’ r#+,. (3) 

The direct problem is modeled equivalently with 
the coupled equations (l-2) or with the explicit rela- 
tion (3). Solution of this problem requires the inver- 
sion of a no x no matrix (or solution of a linear system 
of no equation and no unknown) and is computation- 
ally very expensive. The inverse problem, which we 
are concerned with consists in determining the con- 
trast x from a given finite set of data y, inevitably 
imperfect with respect to the direct model. 

2. BAYESIAN FRAMEWORK 

The Bayesian inference is now a common way to han- 
dle ill-posed inverse problems in signal and image pro- 
cessing [l]. This general framework can be applied on 
many ways to the considered problem, according to 
the choice of different models. 

We model the errors on the measurement with 
an additive zero mean white Gaussian circular noise, 
which seems to be reasonable in the absence of com- 
plementary information. 



The a priori state of knowledge, that is before 
any measurement is carried on, is modeled through 
a probability law p(z) o( exp {-U(Z)} of energy func- 
tion U(Z). The choice of L!(x) is a basic point in the 
Bayesian framework and the Markov Random Fields 
are classically used for image modeling. The choice of 
such a function is not the aim of this work and for the 
sake of simplicity, this energy function is chosen to be 
convex in the following. 

From these assumptions, two formulations can be 
deduced, depending on whether the contrast x has to 
be estimated from the data y or both the contrast z 
and the field in the object 4 have to be estimated - 
the estimate is defined in the maximum a posteriori 
(MAP) sense. 

2.1. First Formulation: Estimation of x. 

This formulation is straightforward. The solution is 
defined as the MAP estimate XCYAP = argmpp(z)y). 

From the explicit relation (3) it corresponds to the 
global minimizer of the criterion 

J”Ap(x) = lly - d(x)ll” + W(x). (4) 

2.2. Second Formulation: Joint estimation of 
x and 4. 

The solution is defined as the joint MAP estimate of 
x and $: (x, 4)~ = arg maxcx,+, P(Z, ~IY), where 

p(x, 41y) = P(YlX, fb)P(4X)P(X) 
P(Y) . 

(5) 

In this relation, p(y) is a constant and p(x) has already 
been defined so only the first two numerator terms are 
to be specified: 
l Using (l), with the considered error model, first term 
can be written: 

P(YIC 4) = exp 
{ 

--$lly - G=$l12} ; 

l Second term corresponds to the probability law of 4 
for a known x. As I$ is the total field in the object, it 
is uniquely determined for a given x by (2). Thus, if 
6 denotes the Dirac distribution: 

~(44~) = a($ - 40 - ‘%X4); 

Finally, using these expressions, the posterior prob- 
ability law can be written: 

P(=,+lY) = exp --$y - G&#412 -M(x) 

a(# - 40 - GoX+). 

So the MAP estimate of (x, r$) is the minimizer of 
the criterion: 

J’:‘4P(x, 4) = lly - G&#JII~ + Wx), (6) 

subject to the constraint: 
qb--r#~~-G,,X~=0. 

2.3. A Computational Challenge 

(7) 

The regularized solution has been defined as the solu- 
tion of a constrained or an unconstrained optimization 
problem. These two distinct formulations are equiv- 
alent in the sense that they define the same solution 
(for x), but one may think about the use of different 
techniques to solve them. 

The Bayesian framework is actually not necessary 
to define the solution as the minimizer of (4). In- 
deed, this criterion is simply a penalized least square 

criterion which can be taken into account in a deter- 
ministic framework. On the other hand, the defini- 
tion of the joint solution as the minimum of (6) under 
constraint (7) is not straightforward to set from deter- 
ministic arguments and other joint criteria are often 
proposed, which will be studied in 5 4. 

Due to the non-linearity of the direct problem, it 
is easy to show that criteria (4) and (6) are not con- 
vex functions. Thus, even if the prior information is 
modeled with a convex energy function, these criteria 
may have local minima. From simulation experiments, 
appearance of local minima is closely linked to a high 
contrast value, a limited number of measurements and 
a low signal-to-noise ratio. Thus computation of the 
solution may be a cumbersome task, especially in these 
dificult configurations. However, the problem seems 
to be less difficult in more favorable configurations. 

In the simplest case, a linear approximation (e.g., 
Born) of the direct model can be considered, which 
seems to be sufficient for some few applications 121. 
However, the linear case has already been extensively 
studied and this paper is concerned with nonlinear 
DT. In the following sections, we propose a classifica- 
tion of existing methods for solving this problem. 

3. SUCCESSIVE LINEARIZATIONS 

Methods of the first class consider iteratively linear 
approximations of the direct model, which leads to 
successively resolve linear inverse problems. Different 
methods of this class have been proposed in the liter- 
ature to solve the nonlinear DT problem [4, 5, 61. In 
the proposed Bayesian framework, one may find strong 
correspondences between them, as shown in [7]. It is 
also emphasized that none of these methods were ef- 
ficient both in terms of linear approximation and of 
regularization. In fact, regularization has been intro- 
duced to stabilize the solution of each linear problem, 
but not to regularize the nonlinear problem as a whole. 

Thus we have proposed a successive linearization 
algorithm specifically designed to minimize the MAP 
criterion (4). At each iteration n, with corresponding 
solution xn, the first order Taylor series expansion of 
A near sn is taken into account (strictly speaking, one 
has to account for the Taylor series expansion of the 
real and imaginary parts of A to define such a rela- 
tion). Thus minimization of JMap can be performed 
with successive linearizations of A: 

Initialize n = 0,x0. 

Iterate for n = 1,2. . . until convergence towards a 
stationary point: 

1 Compute the matrix A, corresponding to the linear 
approximation of A near current solution xn; 

2 Compute xn+l = argm>&(x) with 

Jn(x) = Ily - d(x,) - A,(x - xn)l12 + xU(x). 

Note that for convex energy functions U, all crite- 
ria to be minimized are convex functions and conse- 
quently have a unique global minimum which can be 
computed using a gradient descent technique. 

At each step, Juap is approximated by a convex 
criterion & with same value at xn and same slope at 
this point. Of course, there is no convergence guar- 
antee and the algorithm could diverge. However, if 
it converges towards xoo, this point corresponds to a 



stationary point of the criterion J”^’ (z.e., such that 
Ce,7~*P(~,) = 0). But the possible convergence and 
the reached stationary point are dependent upon the 
initialization of the algorithm. 

The computational load of such an algorithm is 
moderate as it does not require the computation of 
the direct problem, but only of a linear approximate, 
during the minimization step. However, the computa- 
tion of the approximating matrix A,, at each iteration, 
requires solution of the direct problem. Such an algo- 
rithm can be used to compute the MAP solution with 
a relative low computational cost, when the criterion, 
even not convex, seems not to have any local minima. 

4. MINIMIZATION OF A JOINT 
CRITERION 

Some recently proposed methods [S, 9, lo] - methods 
of the second class - define the solution as the mini- 
mizer of a criterion jointly on the contrast x and the 
field in the object +, with the following generic form: 

F(x, 4~) = Ilv - ‘Zi-Wl12 (8) 

+ a II+ - 40 - GW412 + Wx, 4). 

Such a definition is very easy to understand intuitively: 
it corresponds to jointly minimizing the errors on (1) 
and (2) and, as the problem is ill-posed, a penalization 
term on the unknowns is added to regularize it. 

The proposed methods differ on several points: 

l Different value has been proposed for parameter cr. 

l Differences appear on the regularization term. First, 
no regularization was introduced (8, 91. Then, it has 
been proposed to regularize both on x and 4, with 
an energy function Z/(x,@) [lo, 111. Finally, a single 
regularization term on x was accounted for [12, 131. 

l The methods also differ in the techniques used to 
compute the solution. Usual gradient type local min- 
imization techniques have been used [Q, ll] as well 
as local techniques specially designed for such a cri- 
terion [8] and global minimization techniques such as 
Simulated Annealing [ 121. 

Note that such a method never requires solution 
of the direct problem - which was one of their main 
objectives - so it is of relative low computation cost. 
On the other hand, the number of unknown is multi- 
plied by ns + 1, as the object z and the field in the 
object for each incident wave have to be determinate. 

4.1. Bayesian viewpoint 

Recall from 3 2.2 that joint estimation of x and 4 leads 
to minimization of (6) subject to constraint (7). In 
this framework, criterion (8) can be understood as the 
Lagrangian of this constrained optimization problem 
(for a scalar constraint: II@ - +. - GoX4(I = 0); 
or has a penalization of (6) with this constraint. In 
both cases, the choice of parameter CY (the Lagrange 
parameter) is important: on one hand, the value of a 
should be high enough to enforce the constraint; on 
the other hand, the criterion may become numerically 
insensitive to the data if cy is too high. Note that (Y 
has been fixed intuitively in the different methods. 

Moreover, this viewpoint gives indications for reg- 
ularizing such a criterion with an energy function U(x). 
Using Bayes rule for the considered model of errors on 
measurements, we can see on (5) that there is no need 
to introduce prior model on 4. 

Another Bayesian interpretation or this criterion 
has been given in (121. It is proposed to account for 
additive Gaussian models for errors on both coupled 
equations (l-2), so that the joint MAP estimate of x 
and 4 minimizes a criterion of form (8). However, it 
can be shown [14] that to obtain such a criterion, the 
error on the measurement should be taken correlated 
to the unknown x or 4, which seems to be a strong 
and unjustified hypothesis. 

Of course, the minimization of (8) is not equiva- 
lent to compute the MAP estimate has defined in 3 2.2. 
However, it is easy to show that if (x, 4) is a local min- 
imum of (8) and that constraint (7) is verified, then z 
corresponds to a local extremum of the unconstrained 
criterion J”-4p. 

4.2. Proposed algorithm 

We proposed a new algorithm to deal with this con- 
strained optimization problem [14]. This algorithm is 
a strict application of the method of multipliers 131 - 
which uses the augmented Lagrangian - and can be 
summarized as follows: 

Initialize n = 0, p. = 0, (~0 

Iterate for n = 1,2... until convergence towards a 
stationary point: 

1 Compute (xn, 4,) minimizing the augmented 
Lagr=gi=: La, ((x,4), 14) = 

lb - GJ412 + ,&4 - 40 - GoX4) 

+ an119 - 40 - GoXd412 + AU(x); 

2 Update parameters: (Y,,+I = @,, (p fixed) and 
cr,,, = P, + az(4 - (bo - GoX4). 

We have used a gradient descent technique to per- 
form the minimization of the augmented Lagrangian, 
so the reached minimum at each step is only a local 
minimum. Such an algorithm, when converges, guar- 
antees to reach a local minimum of (6) which verifies 
the constraint (7), but the convergence is not guar- 
anteed. However, the first step of this algorithm cor- 
responds to the minimization of (8), and the use of 
additional iterations has been shown to decrease the 
error on the constraint and to improve the solution. 

5. DIRECT MINIMIZATION OF yMA’ 

Different methods - Third class methods - minimize 
the least square criterion, possibly taking into account 
a regularization term (e.g. 115, 16, 171); which corre- 
spond to directly minimize the MAP criterion (4). The 
computation of this criterion is very expensive as it re- 
quires solution of the direct problem. Thus, two cases 
should be distinguished: 

l In easy configurations, when (4) - even nonconvex - 
seems to have a unique minimum, a local optimization 
technique could be used (16, 171. However, we have 
shown that such a minimization could be done with 
less computationally expensive first and second classes 
methods; so one should avoid minimizing directly (4). 

l In dificult configurations, when such local minima 
exist, first and second classes methods discussed § 4 
and 5 3 fail. In this case, a global optimization tech- 
nique could be used to minimize (4). 

Simulated Annealing has been used in [15], but 
such a technique is practically inextricable because 
of the high computation cost of the criterion and the 



large support of the operator A. Instead, we proposed 
two less expensive deterministic algorithms to try to 
reach the global minimum: 

l The first algorithm [18], is based on a Graduated 
Non Convexity scheme (GNC). It consists in approx- 
imating globally the criterion to be minimized with 
a sequence of criteria, which converges towards it, by 
taking care to choose the first one to be convex. Then, 
each criterion is minimized locally, using as starting 
point the minimum of the previous criterion. 

l The second one is an Iterated Conditional Mode 
(ICM) algorithm which performs the minimization by 
iteratively updating each pixel of the object. Such 
an algorithm can be efficiently implemented [I91 using 
special properties of the criterion (4). 

None of these algorithms are guaranteed to con- 
verge towards the global minimum but both have given 
satisfactory results in configurations where a gradient 
type algorithm gets stuck in a local minimum. 

6. CONCLUSION 

The study of DT in the Bayesian estimation frame- 
work allowed us to define a regularized solution to this 
nonlinear inverse problem. 

We have proposed a classification of most of the 
existing methods in terms of algorithms to compute 
this solution. Three classes have been distinguished. 

Methods of the first class correspond to successive 
approximations of the nonlinear object/data relation 
with a linear one. At each iteration, a minimization 
step can be performed at a relatively low computa- 
tion cost, but an update step requires solution of the 
computationally expensive direct problem. 

Methods of the second class define the solution as 
the joint minimizer of a criterion depending both on 
the object and on the total field in the object. These 
methods do not require solution of t.he direct prob- 
lem and the criterion to be minimized is of equivalent 
computation order to the first class methods criteria. 
However, the number of unknowns is greater, espe- 
cially if the measured scattered field corresponds to 
different incident waves. 

Third class methods directly minimize the MAP 
criterion depending on the object. As such methods 
are much more expensive than the others, they should 
be used when the others fail, in particular in presence 
of local minima in the criterion. In this case, global 
optimization methods of this third class can give satis- 
factory solutions while methods of the first and second 
classes get stuck in local minima. 
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