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ABSTRACT 

Experimental data often can only be intcrprcted by 
means of a computational simulation that approximately 
models the physical situation. WC will discuss tcch- 
niques that facilitate application to complex, large-scale 
simulations of the standard approach to inversion in 
which gradient-based optimization is used to find the 
parameters that best match the data. The fundamen- 
tal enabling techniques are adjoint differentiation to ef- 
ficiently compute the gradient of an objective function 
with respect to all the variables of a simulation and 
relatively new gradient-based optimization algorithrns. 
These techniques will be illustrated through the simu- 
lation of the time-dependent diffusion of infrared light 
through tissue. which has been used to perform optical 
tomography [l]. The t,echniques discussed have a wide 
range of applicabilit,y to modeling including the opt.i- 
mization of rnodcls to achieve a desired design goal. 
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1. THE GENERAL PROBLEM 

Frequently a physical situation can only be described 
fully by a comput,ational model. We wish to address 
the general problem of finding the values of the param- 
eters in such a model that come closest to matching a 
given set of data. In data matching the objective func- 
tion to be rninimized is often the negative logarithm of 
the likelihood of the data given their predicted values, 
which yields the maxirnum likelihood (ML) solution. 
-4lternative approaches include regularized versions of 
maximum likelihood and Bayesian methods in which 
the objective function is the minus-log-posterior, yield- 
ing the maximum a posteriori (MAP) estimate. 
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We confine ourselves to objcctivc functions that dc- 
pcnd on the pararnctcrs in a continuous and differen- 
tiable fashion. We do not avoid problems for which the 
objective function possesses rnultiple minima. How- 
ever, because the techniques that we present make USC 
of gradients in t,he optimization process, they will work 
effect.ivcly only when one can easily find the b<asin of at- 
traction for the global minirnum, for example, by mul- 
tiscale or rnultiresolut.ion optimization. 

The proposed method of solving the inverse prob- 
lern is generally applicable to a wide variety of prob- 
lerns in which the measurements for the process in 
question are adequately described by a predictive for- 
ward computat.ional model. We believe it may be used 
in estimating geophysical structure from seismic data. 
Other potential application areas include modeling of 
the ocean, atmosphrrcY fluid flow, and shock-wave phe- 
nomena, as well as optimization of engineering designs 
in complex situat,ions such as streamlining of airplane 
foils and automobile bodies t,o rcducc drag. 

Limitations of space preclude elucidation of the de- 
tails of the techniques prcscnted. The reader should rc- 
fer to the cited art.iclcs for more comp1ct.e information. 
Other enabling techniques that can not be included in 
this account arc multiscale analysis to constrain and 
accelerate the optimization process, dcformablc geo- 
metric models for describing objects with sharp bound- 
arics, and the Markov Chain Monte Carlo method of 
sampling the uncertainty distribution of the estimated 
pararneters [2]. 

2. ADJOINT DIFFERENTIATION 

We wish to address problems that require minimizing 
a scalar function +S by varying the rnany (lo3 to lo6 
or rnore) variables that comprise the parameters of the 
object model. This optirnization problem would be in- 
tractable without knowing t,hr gradient of 9, or sen- 
sitivities, with respect to the paramctcrs on which it 
depends. WC have uncovered a technique to calculate 
t.hese crucid sensitivities, called adjoint differentiation 



Figure 1: Data flow diagram showing a sequence of 
transformations, represented by the boxes A, B, and C 
comrected by the arrows pointing to t,he right, starting 
with the data structure x and ending with the scalar 
p. The daba flow for the adjoint derivatives is indicated 
by the arrows pointed left. 

[4], that is apparently relatively unappreciated. Using 
the adjoint differentiation technique, the calculation of 
all these derivatives can be done in a computational 
time that is comparable to the forward calculation. 

Suppose that a calculation proceeds as a sequence 
of transformations as shown in Fig. 1. The indepen- 
dent variables in t.hc data structures designated by the 
vector x are transforrned by block A to produce the de- 
pendent variables y. These are transformed by blocks 
B and C to produce the dependent data structure z 
and the final scalar ‘p, respectively. 

We call the sequence of transformations 

the forward calculation. We assume that the trans- 
formations are general, wit.h t,he only restriction being 
that they are differentiable. Each transforrnabion is 
self-contained; it requires only its input variables to 
calculate its output variables, e.g., module B uses only 
its input y to calculate its output z. Therefore, each 
transformation should require nothing more than its in- 
put to implerncnt the derivative of its output variables 
with respect to its input variables. The data st,ructurcs 
are likewise general. 

The chain rule allows us to calculate the derivatives 
of ‘p with respect to the ith component of X, 

Even if the transformations are nonlinear, this expres- 
sion arnounts to a product of matrices. The order of 
the summations can obviously bc done in two different, 
ways. If the surn over j is done before t.hc sum over k, 
the calculation proceeds in the same direction as the 
forward model calculation. As the dirncnsions of x, y, 
and z are assumed to be large, this sequence results in 
very large interrnediate matrices, which WC would like 
to avoid. 

On the other hand. if the sum on k is done before 
that on j, the sequence of calculations is 

I C”; z+ B”; z+ A’+> is’, 

whcrc, for example, B’+ effectively multiplies 2 by the 
a’ adjoint of the matrix -. 
aY 

The syrnbol I at the begin- 

ning of the sequence represents the identity structure, 
indicating that the sensitivity calculation begins with 
the first adjoint derivative transformation C’+. This sc- 
quencc implies intermcdiatc data structures (e.g. $) 

that mimic the normal data structures (e.g. y) implying 
storage requirements identical to the forward calcula- 
tion. If the forward transformations are nonlinear? the 
forward data may bc rcquircd for the adjoint calcula- 
tion. The backward flow of the adjoint derivatives is 
depicted in Fig. 1. 

The adjoint differentiation calculat,ion is straight- 
forward to program [5]. Provided that the logic of 
the forward calculation is not too intricate, the adjoint 
derivative calculation should involve an arnount of com- 
putation co~np~arablc to the forward computation. 

We have coined the acronym Adjoint Diffcrcntiation 
In Code Technique (ADICT) [3] to describe a particular 
approach to adjoint, differentiation. The unique feature 
of ADICT is that the computer code for the adjoint cal- 
culation is based on the simulat.ion code with the ex- 
plicit intent to “differentiate” the forward calculation. 
For optimization of a functional based on computation, 
it. is desirable to have the grad&t of the computation. 
not of the physics equations that, the computat,ion is 
supposed to approximate. 

There are several cornpilcrs of FORTR.AN code that 
“aut.ornatically” produce adjoint differentiation code, 
including the well-known ADIFOR. [6] and GRESS [7]. 
However, thcsc approaches impose heavy mernory re- 
quirements. More promising for application to large 
simulation codes is a code-based approach by Gier- 
ing [8]. So far, our approach has been to manually 
code the adjoint code, sornetimcs a daunting task, but. 
one that can be learned [5, 91. Our experience with 
object-oriented design and programming indicates its 
tremendous advantage for linking calculations together 
to forrn a data-flow diagram made of autonomous trans- 
formations, as in our Baycs Inference Engine [8]. 

3. OPTIMIZATION 

The ML or MAP solution is found by minimizing a 
scalar functional 9 with respect to all the model param- 
eters. Given the possibly large number of paramctcrs, 
it is imperative to use the derivatives of 9 with respect 



to all parameters. Fortunately, there is a technique to 
efficiently calculate these gradients as described in the 
previous section. The standard approaches to gradient- 
based optimization of functions of rnany parameters are 
steepest descent and conjugate gradient. Beyond these 
there are a number of techniques that are generally re- 
ferred to as quasi-Newton methods. Davidon pionecrcd 
the variable metric approach [lo], which is based on 
building up an approximate expression for the inverse 
Hessian (the second-derivative matrix of p). Our ini- 
tial success with this algorithm leads us to believe that 
similar, but more adaptable algorithms are worth ex- 
ploring, namely the limited-memory BFGS (Broyden- 
Fletcher-Goldfarb-Shanno) [ll] and possibly the trun- 
cat.ed Newton [12] algorithms, both of which seem to 
have strengths for different kinds of problems. 

4. EXAMPLE: TIME-DEPENDENT 
DIFFUSION 

As an example of t.he success of ADICT, let. us summa- 
rize the results of Saquib et al. [I], who investigated the 
diffusion of infrared light through tissue. They solved 
the problem of inversion of time-rcsolvcd data to ob- 
tain the distribution of diffusion coefficients through 
which the light passed. Suppose that the intensity of 
diffused light at position (2, y) and time t is denoted by 
U(s,y, t) and the source strength by n(r,;y, t). Then 
the time evolution of 15’ through a region described by 
diffusion coefficients D(z, y) and absorption coefficients 
p,(z, y) is given by the diffusion equation 

where the spatial and temporal dependence of the pa- 
rameters has been suppressed. The quantity c is the 
speed of light. 

We approach the computational problem in terms 
of discrete samples of U on a spatial grid with locations 
specified as a subscript s and in time with a superscript 
n. When the spatial position subscript is dropped, the 
resulting quantity is a column vector obtained by ei- 
t.hcr row-ordering or column-ordering the correspond- 
ing two-dimensional field (e.g., U”). 

For simplicity we assume that the measurements 
are degraded by additive uncorrelated Gaussian noise. 
The minus-log-likelihood of the observations Y given 
D and pa is 

c+, = -log P(YlD,p,) = ix2 = c (y’2;zo’)2 , 
s.n 8-n 

(3) 
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Figure 2: Data flow diagram for the forward calculation 
of the diffusion problem resulting in cp = 3~“. The 

adjoint differentiation calculation reverses this flow. 

where uz n , is the noise variance at spatial position s 
and time n and the tilde on the U indicates only those 
positions at which t.hc light intensities are measured. 

To compute (3) given D and pa, we need t.o solve 
the diffusion equation (2) forward in time to obtain 
the diffuse intensity &’ for all time n and spatial po- 
sit.ions s. WC will briefly summarize the approach to 
this calculation employed in Ref. [l], which should be 
consulbed for the details. 

4.1. Solving the Forward Problem 

The general approach taken to solve this forward prob- 
lem is to use t.hc finite-difference method in which the 
spatial and temporal derivatives in Eq. (2) are replaced 
by their finite-difference approximations. This substi- 
tution results in a difference equation that needs to 
be solved forward in time. When solving the diffcr- 
ence equation for L WI+‘, t.he finite-difference approxi- 
mations to the spatial derivatives can bc evaluated ei- 
ther at time index n + 1 or n. In the implicit method’ 
for solving differential equations, the spatial derivatives 
are evaluated at the time instance (n + 1) when com- 
puting the diffuse intensity C ‘+‘. The implicit, met,hod 
is unconditionally stable for any value of At. 

Substituting in Eq. (2) the equation to be solved t.o 
obtain Un+’ from U” is, in vector notation? 

where A is a sparse matrix (because dcrivat.ives involve 
only local variables) whose elements depend on the D 
and pa values. R n+1/2 denotes the integrated source 
strength between time instances n and n. + 1. 

‘We note that in [l] a slightly different method, called the 
Alternating-Directions Implicit (ADI) method, was used for cal- 
culational efficiency. 



The procedure for calculating the time-evolution 
of U is depicted in Fig, 2. The transformations de- 
noted by AT essentially involve solving Eq. (4) to move 
forward by one time step. The minus-log-likelihood 
(3,x2) is the accumulation of the sum of the squares 

of the differences between the measurements Y,” and 
their predicted values l?:. Thus it gebs a contribu- 
tion from each mcasurcmcnt time. The assumed timc- 
independent distribution of D is used in each time step 
calculation. 

4.2. Gradient Computation 

We designate the unknown parameters by the column 
vector 8 = [D pa] ?‘. We need the derivative or sensitiv- 
ity of (p(8) with respect to 8 to facilitate the solution of 
the inverse problem. ADICT requires us to work back- 
wards in time using the same discretized equations that 
is used to compute the forward solution. The sensitiv- 
ity of 9 with respect to 6, is obtained by c,omputing the 
intermediate sensitivity of ‘p with respect to the light 
intensity Li at. all time steps. We prcscnt a brief out,line 
of the approach. 

The sensitivity of 9 with respect to c’” is obtained 
recursively by using the sensitivity of p with respect to 
U”+‘. Applicati on of the chai11 rule yields 

dy &Tn+l 
-=- - 
dU” [ 1 =dq L& 

dU” dC’n+l + au73 3 (5) 

where s denotes the change in y when only U” is 

varied, keeping all other variables constant, while & 
denotes the tot.al change in 9 when U” is varied along 
with all variables that depend 011 U”. 
Eq. (3) with respect to Up, we obtain 

Differentiating 

This result flows backwards through the boxes that 
compute contributions to $,x2 at each time step. Dif- 

ferentiating Eq. (4) with respect to Un, WC obtain 

Using Eqs. (5) and (6), we obtain the sensitivity of p 
with respect to U” z 

$ = (A-‘)$& + g . 

In the diagram this result comes from each AT trans- 
formation and flows backwards from Cr”+’ to U”. 

Similar USC of the chain rule yields the sensitivity of 
‘- with respect to 8, which result flows out of the top 
rf the AT box in Fig. 2 and gets added to the total 
derivative of 9 with respect to the D vector. 

4.3. Inversion 

The problem of reconstructing the unknown pararnc- 
t.ers D and p, from the measurements Y,” is an ill- 
posed inverse problem. Some form of regularization is 
necessary to make the solution well behaved. We ac- 
complished this by incorporating an image model in the 
reconstruction process that models our a yriori knowl- 
edge regarding the unknown fields D and pa. Markov 
random fields (MRF) h ave been extensively used in im- 
age processing applications. WC model D as a gener- 
alized Gaussian MRF (GG1IR.F) [13] with an energy 
function of the form 

where N is the set of all neighboring pixel pairs. The 
popular choice of y = 2 in the signal-processing litera- 
ture yields a quadratic cost function, which tends to cx- 
ccssively penalize large deviations resulting in blurred 
edges. It is possible to provide good edge prcscrvation 
in the reconstructed image for p x 1 [14]. Furthermore, 
the form of the model facilitates the estimation of the 
strength of this prior directly from the data [14]. 

Our example consists of a simulation of time-resolved 
data for a 6.4-cm-square sect,ion of tissue. Figure 3 
shows as a 64x64 image the original diffusion cocffi- 
cients, which range in value from 0.7 to 1.4 cm2nsm1. 
The absorption coefficients are set to a constant value 
of 0.1 cm-l. The values of these coeflicients? as well as 
the physical dimensions of the problem, have been cho- 
sen to reflect those of real tissues. Although the above 
method can bc used to estimate D and pa simultane- 
ously, we will restrict ourselves to the simpler case of 
just estimat.ing D and assume that pa is known. 

We assume that there are four pulsed sources placed 
at the midp0int.s of each side of the square region. 
There are 52 dctcctors evenly spaced along the sides, 
which measure the time-dependent signal in rcsponsc 
to each pulsed source. Gaussian noise is added to the 
simulated signals with an rms value of 3% of the rms 
signal value over the 1.0 ns observation time, corre- 
sponding to a signal-to-noise rat.io of 30 dB. The time 
step used is At = 0.005 11s and the detector resolution 
is 0.02 11s. 

Figure 3 shows the MAP reconstruction for p = 
1.1 obtained using 70 iterations of the conjugate gra- 
dient algorithm (taking about nine hours on an HP 
9000/755). The reconstruction is remarkably good corl- 

sidcring that effectively only four views are used. This 
result confirms the value of incorporating ADICT into 
a simulation code to solve this inversion problem in 
which roughly 4000 paramet.t:rs are determined from 



Figure 3: The original distribution of diffusion coef- 
ficients (a) and their reconstructed values (b) derived 
from time-dependent measurements made around the 
periphery in response to short pulses introduced at the 
middle of each of the four sides. 

approximately 10000 measurements (54 detectors X 50 
time samples x 4 source positions). 

5. DISCUSSION 

We have presented some useful tools that permit one 
to cflicicntly cstirnatc parameters of a complicated for- 
ward model from mcasuremcnt,s. The use of a forward 
model is important because many steps in a model that 
might describe a physical system and measurement scc- 
nario may not easily be directly inverted. This general 
approach allows one to attempt to construct cornplctc 
models to fully account for the observations. 

The primary technique in the toolkit is the Adjoint 
Differentiation In Code Tcchniquc (ADICT) that yields 
derivatives of a functional (objective function) based on 
a forward computational code with respect to all the 
paramet.ers in the computational model. The dcriva- 
tives of the computed functional are desirable when 
minimizing that functional. In the partcular approach 
that, we suggest, adjoint differentiation is accomplished 
through code rather than by storing derivative matices. 
The resulting calculational time for the derivatives is 
comparable to that of the forward rnodcl calculat.ion. 
ADICT can, in principle, can be implemented for any 
code that is differcntiablc. Adjoint differentiation is bc- 
ing applied to some large hydrodynamic codes, e.g., to 
calculate the dynamics of the ocean and atmosphere. 

ADICT permits the use of gradient-based optimiza- 
tion algorithms, which arc quite efficient. WC have had 
some success with a quasi-Newton method of optimiza- 
tion and WC therefore suggest that the limited-memory 
BFGS algorithm [ll] may be very useful for problems 
involving many paramctcrs of mixed type. 

When optimizing nonlinear models it is possible to 
encounter objective functions with multiple local rnin- 
ima, which can pose difficulties for gradient-based algo- 
rithms. However, for many kinds of problems, the de- 
sired minimum can be found cithcr by knowledgeably 
choosing at good starting point or by using a mult,ireso- 
lution approach, i.c. by finding the minimum at co<arse 
resolution and then working tow,ard finer resolutions 
[15]. If t.his approach does not work for a particular 
problem, to find the global minimum it may be ncc- 
essary to resort to stochastic opt.imizat,ion algorithms 
(simulated annealing or genetic algorithm), which arc 
notoriously incfhcient compared to gradient-based ap- 
proaches. It. might be possible to combine the best of 
both approaches through a hybrid algorithm in which 
the stating point of a gradient-based algorit,hm is cho- 
sen st,ochastically. 

It is often desirable to use a high-level model to 
describe an object or situation of imerest. As an cx- 
ample, WC have found it very useful to employ a de- 
formable geometric model to represent the boundary of 
an object that we wish to reconstruct from projection 
data [2, 51. In three dimensions, such a model might 
consist of a surface represent.ed by many triangles. An 
even higher-level model would use splint-based patches? 
which would result in fewer parameters, but not neccs- 
sarily much less computation time. High-level models 
are often invoked to help regularize or control the in- 
version problem in t.he belief that it should be easier to 
solve a problem involving fewer variables. However, we 
have come to realize that it may be more desirable to 
use a very flexible description involving many pararne- 
t,ers. The flexibility of such a model can be controlled 
through the use of a prior or graded constraint func- 
tion, which effectively reduce the number of degrees of 
freedom of that model. Such constraints often take the 
form of an integral of the square of a derivative of SOIIK 

quantity, which bascially acts to smooth that quantity, 
The advantage of this general approach is that it allows 
one to choose the prior t.hat is most appropriate for the 
problem and even locally turn off t,hc control when that 
is indicated by the data or circumstance [16]. 

In const,ructing the Bayes Inference Engine [3]? we 
have uncovered anot,her basic tool for model building. 
In order to easily accommodate a variety of dcformablc 
geometric mod& in conjunction with a variety of po- 
tential measurement scenarios, we decided to c~nploy 
an intcrmediatc elemental representation for the ob- 
jcct of interest. Every high-level model is converted to 
the elemental representation before the measurement 
process can be accomplished. For a physical object the 
elemental representation is a discretizcd density image 
(array of pixels) in 2D or a voselatcd array in 3D. This 



approach permits implementation of a new high-level 
object model without writing new code to calculate the 
result of each type of mc~asurement. 

Beyond its calculational advantage, we have come 
to recognize the underlying value of t.hc clemental rep- 
resentation as a basic modeling tool. Its importance 
lies in the fact that when one uses and sees only a high- 
level model, deficiencies in matching the data can only 
be displayed in terms of the gradients of p with respect 
to the model parameters. It can bc difficult to recog- 
nize what aspects of t.he model do not accommodate 
the data. Howcvcr, by displaying t.he gradirnts in the 
elemental representation, it can become evident. how 
the high-lcvcl model needs to be changed, and possibly 
augmented, to better match the data [16]. 

An important message that. we wish to get across 
is that one should not be afraid of using models that 
contain large numbers of variables. With reasonable 
constraints on the models? one can easily accommodate 
lots of parameters. Our experience indicates that there 
is often no big penalty associated with using many pa- 
rameters, either in terms of computational sprcd or ill 
posedncss. 
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