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ABSTRACT 

In this paper we introduce parametric binary Rademacher 
functions of two types. Based on them using different kinds 
of arithmetical and logical operations we generate a set of 
binary polynomial transforms (BPT). Some applications of 
BPT in nonlinear filtering and in compression of binary 
images are presented. 

1. INTRODUCTION 

Spectral analysis is a powerful tool in communication, sig- 
nal/ image processing and applied mathematics and there 
are many reasons behind the usefulness of spectral analysis. 
First, in many applications it is convenient to transform a 
problem into another, easier problem; the spectral domain 
is essentially a steady-state viewpoint; this not only gives 
insight for analysis but also for design. Second, and more 
important: the spectral approach allows us to treat entire 
classes of signals which have similar properties in the spec- 
tral domain; it has excellent properties such as fast algo- 
rithms, high energy compaction property of the transform 
data. 

However, there are some problems in signal/ image pro- 
cessing (especially if the input data is binary) where they 
cannot be applied directly. 

We may properly ask what is a basic transform for bi- 
nary signal/image processing which plays the same role for 
it a.5 spectral transform for linear processing. 

Similarly we may ask what is a basic transform for non- 
linear signal/image processing which plays the same role for 
it as spectral transform for linear processing. 

We will develop a compact representation of signals for 
later use in digital logic and nonlinear signal analysis. Our 
approach will be based on introduction of parametric bi- 
nary Rademacher functions (BRF); on generating a set of 
transforms using Rademacher functions and different kinds 
of arithmetical and logical operations. Emphasis is placed 
on the two classes of transforms, introduced in this paper: 
transforms generated by BRFs using only one operation 
(arithmetical or logical) and transforms generated by BRFs 
using two operations (arithmetical or logical). We present 
the basic properties of these transforms. 

This development is motivated also by potential appli- 
cations in areas such as nonlinear signal/image processing, 
construction of new architectures of signal/image process- 

ing computers or systems suitable for simultaneous arith- 
metical or logical operations. 

2. BINARY POLYNOMIAL FUNCTIONS AND 
MATRICES 

2.1. Rademacher Functions and Matrices 

Let a and b be arbitrary integers. We form the classes 
r,(t,a, b) and s,(t,a, b) of real periodic functions in the 
following way. Let 

ro(t.a,b) E so(t,a, b) E 1, (1) 

rn+l (t, a, b) = a, fortEU~~ol[$,fk++i), 
b, for t E U~~ol [ $t + 5&l 2 *). 

(2) 
and 

a: for t E LO, &I, 
wl(t,a,b) = b, fort E [h, &) n = 0, 1,2, . . . 

0, otherwise for t E [0, l), 

(3) 
Note that 

rl(t,a,b) = sr(t,a,b) = 
a, for t E [0, t), 

b, for t E [f, 1) 

DEFINITION 2.1: The functions r,(t,a, b) arc called 
Rademacher (a, b)-junctions of I-type. The functions 
s,,(t, a, b) are called Rademacher (a, b)-functions of II-type. 

Note that when a = 1 and b = -1, the Rademacher 
(a, b)-functions of l-type coincide with the Rademacher func- 
tions [5]. Let us consider some properties of the generalized 
Rademacher functions defined above. 

PROPERTY 2.1: There are the following representa- 
tions of the Rademacher (a, b)-functions of the l-type: 

1) r+l(t,a,b) = a+ (b- a)c,+l(t), t E [O,l), (4 

where c,,+l are the coefficients from 

t = c cn(t)2-* = c&2-n. (5) 
n=l n=l 



2) r,,(t, a, b) = i [(a - b)sgn [sin(2”nt)] + a + b] , 

t#$k=O ,..., 2”-‘, 
ify>O 
if y < 0: 

3) There is the following representation of the 
Rademacher functions of I l-type: 

s,tl(t,a,b)=[a+(b-a)c,tl(t)l~ci(t). 
:=l 

(6) 

4) There is the following relation between the Rademacher 
(a, b)-functions of l-type and II-type: 

2”-1-l 

r,+l(t,a,b) = c wl(t - s,a,bl. (7) 

For a natural number n and integers a and b we define the 
following discrete functions: 

&“)(x,a,b) = rk( s,a,b): (8) 

k = 0, 1, . . . . n - 1; z = 0, 1, . . . . 2” - 1; n 2 0. 

2x + 1 
.$“)(x,a, b) = sk(2n+lvav b)g (9) 

k=O,l,..., n-l; z=O,l,..., 2”-1; n>O. 

DEFINITION 2.2: The rectangular (2” x (n + 1)) 

matrix R(n,a, b), whose (2, k)th element is RJ,“)(x,a, b), 

x = 0, 1, . . . ,2”-1, k = 0,. . , n, is called Rademacher (a, b) 
matrix ofl-type (of order n). The rectangular (2” x (n+l)) 

matrix S(n, a, b), whose (x, k)th element is .S$“)(x, a, b), x = 

0, 1, . . . ,2” - 1, k = 0,. . . , n, is called the Rademacher (a, b) 
matrix of II-type (of order n). 

REMARK 2.1: For each pair of integers (n, k), n > 0, 
1 ,< k 5 n, the kth column of R(n, a, b) defines a func- 
tion (0, 1, . . . ,2” - 1) + {a, b}. This set of functions is 
called the system of discrete Rademacher (a, b) functions of 
I-type. Analogously, for each pair of integers (n, k), n > 0, 

1 5 k 5 n, the kth column of S(n, a, b) defines a function 

(0, 1, . . . , 2” - 1} -+ {a, b}, the system of which is called the 
system of discrete Rademacher (a, b) functions of II-type. 

EXAMPLE 2.1: When n = 4, the Rademacher (a, b)- 
matrices of l-type RT(4, a, b) and II-type ST(4,a, b) have 
the following forms, respectively: 

( 

1111111111111111 
aaaaaaaa bbbbbbbb 

a a a a bbbbaaaabbbb 

a a bbaabbaabbaabb 

a b a b a bababababab 

( 

1111111111111111 
aaaaaaaa bbbbbbbb 

a a a a bbbb00000000 

a a bb000000000000 

ab00000000000000 

where T denotes matrix transposition. 

The discrete Rademacher (a, b)-matrices of l-type and 
II-type have the following properties. 

PROPERTY 2.2: 

l)Rp)(x,a,b)=a+(b-a).xk(x); k=l,..., n, 

where n is a natural number, and x, 0 5 L 5 2” - 1 is 
written in the form 

n-1 

x=Cx,(x).2n-‘-1, j=O,l,..., n-l. (10) 
3=0 

2) RT(n, a. b) . R(n, a, b) = 2+‘[(a - b)2 . It,,) + (a + 

bJ2 . J(n)], 
where 1~~) is the identity matrix of order n and Jc,,) is the 
(n x n) matrix whose all entries are equal to 1. 

In particular, for the classic Rademacher matrices 

RT(n, 1, -1) . R(n, 1, -1) = 2” . It,). 

3) Let n be a natural number, 1 < k 5 n and suppose that 
x, 0 5 x 5 2” - 1 is written in the form (10). Then 

k-l 

Sp)(x,a,b) = [a+(b-a).xk(x)]n[l-xi(x)]; k = l,...,n. 
i=O 

(11) 
4) ST(n, a, b).S(n, a, b) = a(a+b).[J( n )+ Cv:2 2’P’i) ] 

I 1 fn) 

+b(b - a) . D(,), 
where J(,) is the (n x n) matrix whose all the entries are 

equal to 1, P[z) is the (n x n) matrix whose leftmost (n - 

;) x (n - j) submatrix is Jc,-,), i = 1, . . . . n - 2: and 

DC,) = diag(2n-1, 2”-‘, . . . . 2,1). 

2.2. (a, b; T)-Polynomial Functions of I-Type 

Let T be an arbitrary associative arithmetical or logical op- 
eration, (mo,ml, . . . . m,-1) be the binary representation 

of an integer m = C::ol m,2n-1-‘, 0 5 m 5 2n - 1. Let 
also H @ G be the Kronecker product of the matrix H and 
the matrix G, and H@” be the Kronecker nth power of t.he 
matrix H, i.e. H@” = p @ H y . . . @ H,. 

n times 

We form a class of functions &)(z, a, b; T) from the 
system of discrete Rademacher (a, b)-functions of I type (i.e. 

from {R!f?(x,a,b)}~~~) in the following way. Let 

d?(x, a,6 7) = d$m, ,..., m,-l (2, a, b; 7) 

= [R~)(x,a,b)]mo T... 7 [Rf,“‘l(x,a,b)]m”-l, (12) 
where T is an arithmetical or logical operation. If T is a 
logical operation, then we naturally assume a, b E (0, 1). 

DEFINITION 2.3: The functions &)(x,a, b; T), m = 
0, . . ..n - 1, are called (a, b; t)-polynomial functions. If T is 
an arithmetical (logical) operation, the (a, b; r)-polynomial 
functions are called arithmetical (logical). 



DEFINITION 2.4: The square matrix @(n, a, b; 7) = 

[&?“)(z, a, b; T)], z, m = 0, 1, . . . . 2”-1, which has as columns 
the (a, b; r)-polynomial functions, is called the (a, b; T)- poly- 
nomial matrix. 

Let T be multiplication operation. The (a, b, x)-polynomial 

functions r&’ are formed via Rademacher (a, b)-functions 

Rk) (2, a, b; x) by the following formula: 

n-l 

&)(x,a, b; x) = n[R!-)(x, a, b)]“‘, 

t=O 

where m; is the ith bit in the binary representation of m 
via m = C:lob’ rn;2+‘-‘. 

When a = 1, b = -1, the (a, b)-polynomial functions 
coincide with the Walsh functions, and when a = 0, b = 1, 
they coincide with the Reed-Muller (conjunctive) functions 

PI. 
Based on Property 2.2, 1) we have the following expres- 

sions: 
n-1 

4:)(X, 1, -1) = n(l- 22i)m’, (13) 
i=o 

for the Walsh functions, and 

n-1 

&)(z, 0,l) = n x:1, (14) 
i=O 

for the conjunctive functions. 
Let now T be an arbitrary associative binary logical op- 

eration, a = 0 and b = 1. Let m and I have binary repre- 
sentations (me,. . . , mn-1) and (20,. . . , ~~-1) respectively. 
Then, by Property 2.2, the formula (12) becomes 

Examples of the r-polynomial logical functions are: 
a) conjunctive, if T is the operation A (AND); denoted 

by’&+, A); 
b) disjunctive, if T is the operation V (OR); denoted by 

&)(I, q 
c) antivalent, if r is the operation $ (XOR); denoted 

by &(I, e). 

2.3. (a, b)-Polynomial Functions of II-type 

First define the shifted Rademacher (a, b)-functions of II- 
type, namely 

sc)(x,a,b) = stk)(x- z,a,b), 

where m E (0, 1, . . . . 2k - 1). 

DEFINITION 2.5: The functions hp)(s, a, b) 

= s(‘)(x,a, b), h(,“)(x, a, b) = s(l)(x, a, b), and /I(“) ++,,, x,a,b) ( 

=s~t*)(~,a,b),m=O,l,..., 2k-l, k=l,..., n-1,are 
called (a, b)-polynomial functions of II-type, and they form 
the system of (a. b)-polynomial functions of II-type. 

DEFINITION 2.6: The square matrix H(n, a, b) 

=[h?)(z,a,b)], x,r=O,l,..., 2”-1,whichhasascolumns 
the (a, b)-polynomial functions of II-type, is called the (a, b)- 

polynomial matrix of II-type. 

Note that the classical Haar functions (matrices) are the 
particular case of the (a, b)-polynomial functions (matrices) 
of II-type where a = 1: b = -1. The Haar-conjunctive func- 
tions (matrices) will be (0, 1)-polynomial functions (matri- 
ces) of II type. 

EXAMPLE 2.2: The Haar-conjunctive HS matrix is: 

10000000 
10001000 
10100000 1 

I 11000010 
11010000 
11010001 1 

3. BINARY POLYNOMIAL TRANSFORMS 

3.1. (a, b)-Polynomial Transforms of II-type as Bi- 
nary Wavelet Transforms 

Binary Wavelet Transform emerged from the application of 
wavelet theory in finite field with two elements GF(2) [4, 71. 
It is highly advantageous in computational point of view, 
since the computations are performed by “exclusive or” and 
“and” operations. Although smoothness and vanishing mo- 
ments properties of real discrete wavelet transforms [9] do 
not make sense in GF(2), BWT is useful to localize data in 
time and frequency and separately encode rapid and slow 
changes across the data. In that sense, an example for a 
one stage BWT is defined as 

.WT=(; ;)(; ;)L (16) 

in [4], where L is a permutation matrix called “lazy wavelet 
transform” such that L(xi, zz,. . .) = [22,x4,. . . , zi,13,. . .]. 

Wavelet vectors resulting from (16) are exactly the same as 
the columns of Haar-conjunctive matrix ((0, 1)-Polynomial 
Matrix of II-type) introduced in the previous Section. 

3.2. (a,b)-Polynomial Functions of I-type as Dis- 
crete Wavelet Packet Transforms 

Wavelet packet transform is a generalization of wavelet trans- 
form which offers a wider range of analysis possibilities for 
the signal [9]. It is associated with a best basis selec- 
tion algorithm which selects a subdecomposition structure 
among all possible decomposition structures presented by 
the packet transform, subject to a criterion. Wavelet Packet 
Transform can be better visualized by a full binary tree, 
where left and right branchings represent lowpass and high- 
pass filterings, respectively, and best basis selection corre- 
sponds to extracting a subtree of the binary tree. 

Consider the Walsh matrix W, of order n in Hadamard 
ordering. It corresponds to a Wavelet Packet Transform 



with [l l] and [l. - l] being the lowpass and highpass filters, 
respectively. The conjunctive matrix K, of order n is also 
a wavelet packet transform in GF(2) with [l O] and [l l] 
acting as the lowpass and highpass filters, respectively. 

3.3. EfRcient computation algorithms 

3.3.1. Fast (0, I)-Rademacher Transforms of I-type 

LEMMA 3.1: The (0, 1)-Rademacher matrix R, = 
R(n,O, 1) of I-type can be represented as 

where 
R(o) = In-1 on-1 

n 
( In-l > L-1 ’ 

(17) 

(18) 

Rk) = 
L-l--J On-1 cl 
In-i-J In-i 0 , i = 1,2, . . ..n - 2, (19) 

0 0 I(j) 

(20) 

I, (respectively, It,)) is the identity matrix of order 2’ 

(respectively, of order j), i(,) is an opposite identity matrix 
of order n, Oj (respectively, 13) are column-vectors of 
length Pi, consisting of zeros (respectively, of ones). 

3.3.2. Fast (a, b, x)-Polynomial Transforms of I-Type 

LEMMA 3.2: The (a, b, x)-polynomial matrices an = 
@(n, a, b; x) can be expressed by the following formula: 

‘pn = (Gn)“, 

where 

G, = 

la 00 
00 la 

. . . . . . 
00 00 
lb 00 
00 lb 

. . . 0 0 .‘d 0 

0 0 

0 0 
. . . 

1 a 
0 0 
0 0 

. . . 
1 b 

(21) 

I (22) 

3.3.3. Fast (a, b)-Polynomial Transforms of II-Type 

LEMMA 3.3: The (a, b)-polynomial matrices of II-type 
H, = H(n, a, b) can be expressed by the following formula: 

72-l 

H, = G, n diag(G,-, , Ij, . . . . In-i), 
I=1 

(23) 

where 

Gk = [Ik-1 8 (;) Ik-1 ‘8 (;)I, (24) 

where 

H,=G,= ; ; 
( > 

and I, is the identity matrix of order 2’. 

4. BINARY POLYNOMIAL TRANSFORMS IN 
NONLINEAR FILTERING 

The use of BPT in nonlinear filtering was discussed in de- 
tails in [l]. Here we just show very simple and very ef- 
ficient realization for a threshold filter [3]. The threshold 
filter (TF) Sr(X) based on the M-variable discrete func- 
tion f(.) : (0, l}M + !l? maps the signal X into the output 
signal Y = {Y(k), k = 1,2, . . . . L), where 

Y(k) = S,(W)) = 2 f(an(X(k))), (25) 
n=l 

Us is the vector-al threshold function with the elements 

defined by b,,(X) = { i ztLrtLe 

Denote xj = u](X)), j = 1, . . . . h. Define an indicator 

x(x,) = [XO(XJ), . ..I xp-1 (XJ)]; j = 1, . . . . M, (2‘3 

where 

XL(%) = I 1, if (kN-1, . . . . ko) = xJ, 
0, otherwise, (27) 

j = 1, . . . . M; (kr\r-1, . . . . ko) is the binary vector represen- 
tation of the positive integer k, k = 0, ...,2N - 1. 

Denote by h the histogram vector of Xj, j = 1, . . . . M, 

i.e. 
M 

h = c x(x]). (28) 
J=l 

The matrix analogue of the formula (25) is the following 
(index n is omitted) 

y=f.hT, (29) 

where hT is the transposed vector of the histogram vector 
h (28). Let us now modify (29) to the form 

with 

y=h.H& (30) 

g%H+f, (31) 

where H is any nonsingular matrix. In fact, realization of 
threshold filter in [3] follows directly from (30)-(31) when 
H = K is the conjunctive (Reed-Muller) matrix. Nev- 
ertheless, there exists much simpler and efficient realiza- 
tion of this filter using Rademacher-sorting network without 
computation of the threshold histogram h. The flowchart 
structure of Rademacher-sorting network is similar to the 
flowchart of the fast Rademacher transform, with changing 
of addition operations to minimum operations. 



5. BINARY POLYNOMIAL TRANSFORMS IN 
COMPRESSION OF BINARY IMAGES 

Binary image compression may find applications in com- 
pressing bi-level high resolution images such as fax pages, 
scanned images or segmentation data and bit-plane by bit- 
plane compression of multi-level images in some specific 
cases. Recently, multiresolution analysis via wavelet trans- 
form has found efficient applications in multilevel image 
compression ( [9]). The success of multilevel image com- 
pression with wavelets has been followed by applications of 
wavelet theory over the finite field GF(2) ( [4, 71). Swanson 
and Tewfik developed a theory of binary wavelet transform 
in terms of two band perfect reconstruction filter banks in 
( [7]). Their test results with binary image compression 
achieved promising results in terms of first order entropy. 
Soon after Johnston ( [4]) used another approach (lifting 
scheme ( [8])) to construct a binary wavelet transform which 
is a cascade of binary matrices composed of upper and lower 
unimodular binary blocks and a simple permutation matrix 
collecting even samples to upper half and odd samples to 
lower half (see (16)). Here we will present how to obtain 
similar binary transforms via binary polynomial matrices. 

Consider the Reed-Muller matrix KM of order M 

and a binary vector fM of length 2 M. The Reed-MuIler 
Transform of fM can be defined as 

fRM = &dk, 

where the output fRM is computed in modulo 2 arithmetic. 
fRj.J corresponds to a wavelet packet representat,ion of fr,f 
which can be obtained by a full wavelet tree decomposi- 
tion. In this decomposition first and second rows of K1 
act as lowpass and highpass filters, respectively. The above 
transform can be generalized into two-dimensional case for 
images as 

FRM = KMF~KL, (33) 

where F is a binary matrix representing pixel values of a bi- 
nary image. Note that (33) is an invertible transform where 
the inverse of KM in GF(2) is equal to itself. We can obtain 
the best multiresolution decomposition of F, by selecting a 
subdecomposition structure covered by KM. The subde- 
composition structure can be obtained by forming a matrix 
such that c - 

(34) 

where 0~~1 is the zero matrix with size 2”-1 lx 2”-1, and 
A, B, C can be either 0~~1 or Kh,_, with the restriction 
that 

K; = K1. 

Some quantitative results of the above binary transform 
are presented in Table 1. For all four test images, the log- 
arithmically growing decomposition tree is found to give 
the best performance in terms of minimum number of ze- 
ros. Hence, the only overhead information needed is the 
depth of the tree. For comparison, the results of S and S&P 
Transform [6] are also included. Although S and S&P are 

Table 1: Compression results for thresholded 256 x 256 
Lena, 128 x 128 Ball, 128 x 128 Bird and 512 x 512 Text 
images 

org. Lenna S&P s BT 
no.nonzero 26924 3940 3688 4251 

Entropy 0.98 0.39 0.37 0.34 

ora.Bird S S&P BT 1 v 
no.nonzero 12940 843 747 730 

Entropy 0.74 0.35 0.32 0.26 

0x-p:. Ball S&P s BT 1 
L 

no.nonzero "56715 1727 1599 1531 
Entropy 0.75 0.06 0.06 0.05 

org. Text S S&P BT 
no.nonzero 3174 366 318 399 

Entropy 0.71 0.19 0.17 0.16 

real wavelet transforms for lossy and lossless compression, 
they is also suitable for binary image compression because 
they produce integer outputs in a very limited range for 
binary data. The proposed binary transform performs bet- 
ter than both S and S&P in terms of first order entropy of 
transformed coefficients. It satisfies significant reduction of 
entropy from the original image. 

PI 

PI 

PI 

141 

PI 
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PI 

PI 
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