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ABSTRACT 
Granulometric transforms are used for image (texture) 
classification and characterization of optimal morpho- 
logical (granulometric) bandpass filters. The present 
pa.per discusses parallels between these t.wo applica- 

tions of granulometric transforms for random sets and 
two corresponding applications of Fourier transforms, 
classification of random arcs by Fourier descriptors and 
characterization of the Wiener filter via power spectral 
densities. 

1. INTRODUCTION 

Granulometries and their size distributions were intro- 
duced by Matheron to characterize sieving filters and 
their effects on random sets [l]. The present paper dis- 
cusses more recent developments concerning how gran- 
ulometries induce transforms on random set.s and how 
these transforms are used for two standard image pro- 
cessing tasks: classification via feature vectors and de- 
sign of optimal filters for the signal-union-noise model. 
It also discusses parallels between granulometric and 

Fourier feature-based classification, and between the 
roles played by granulometric and Fourier transforms 
in designing optimal filters for the signal-union-noise 

model and the signal-plus-noise model, respectively. 
We begin by outlining the basic definitions and prop- 
erties of multivariate granulometries. 

Let G = {Bl,B,,.. . , B,} be a collection of com- 
pact, convex sets such that no set in G is open relative 
to another set in G. For t = (tl,dz, . . . ,tn), tj > 0 for 
i= ,...) 1 n, define the set operator \Et by 

Qt.(S) = (J S 0 tiBj (1) 
i=l 

As a union of openings, \Et is a (multiparameter) 7- 
opening with base {t 1 B1, . ..,t,B,}.Foranyt= (tl,tz, 
. . . , t,,) for which there exists ti = 0, define \kt(S) = S. 
{U,} is called an n-dimensional multivariate granulom- 
etry with generator G. The multivariate size distri- 

bution for S is defined by R(t) = Y[O,(S)], v denot- 
ing volume, the inverted sire distribution by H(t) = 

Y[A - R(t), and the multivariate pattern spectrum by 
a(t) = 1 - Cl(t)/v[q. R(t) is a probability distribu- 
tion function [2] and, for any nonnegative-integer vec- 
tor k = (kl, kz, . . . , &), the kth moment of Q is given 
by the Stieltjes integral 

p(k)(S) = J’Y . . I’” $1 . . t;-daql, .. . , tn) (2) 
--co --oo 

The class of finite-generator Euclidean (univariate) gran- 

ulometries whose generator sets are compact and con- 
vex is a subclass of the multivariate granulometries be- 
cause, for t = (t, t, . , t), {@t} is the Euclidean gran- 

ulometry {St}. 

2. CLASSIFICATION 

Treating S as a random set, the mapping S + @s 
provides a transform yielding a multivariate random 

function. For classification, we use the random-vector 
transform S + {/l(k)(S)}, where some finite set of 
moments is used to produce a feature vector. Gran- 
ulometric feature vectors have been used for texture 
classification (including gray-scale granulometric fea- 
tures) [2]-[4]. Most applications have involved uni- 

variate granulometric moments; however, mulivariate- 
granulometric-moment features are more discrimina- 

tory. 
To see the parallels between granulometric-moment 

features and standard Fourier descriptors, consider a 

random planar arc having the parametric description 
I’(t) = (X(t), Y(t)). Restricting ourselves to cosine trans- 
forms, X(t) has Fourier coefficients given by 

A, = f 
J 

T 

0 
X(t) cos Tdt 

(T being arc length) and the cosine coefficients C,, for 
Y(t) are defined similarly. For fixed m, the random 

vectors (Ao,Al, . ,A,) and (Co,Cl, . . . , Cm) taken 
together form a feature vector for r. For Gaussian 
maximum-likelihood classification, the covariance ma- 
trix of the combined vector plays a central role. For 



the cosine transform, a second moment is of the form 

E [&Gil = $ 
n r 

JJ 2kns o o Rxy(t,s)cos~cos- T dtds 

(4) 
where Rxy (1, s) is the autocorrelation function for the 
coordinate functions. 

For a univariate granulometric classifier using mo- 
ments plll, p112, . . . , p ‘lrn from granulometry {Sr,,} and 

moments p2v1, p*l*, . . . , p21rn from granulometry { Qz,~}, 

a second moment looks like 

E [/J~+*,~] = I%” R+;@;(t, s)t”sk dtds (5) 

In both cases, the second-order moments of the features 
are given in terms of the corresponding two-dimensional 
transform of the autocorrelation function of the rep- 
resentative functions. There are differing interpreta- 
tions depending on the degree to which the coordi- 

nate functions and cosine (Fourier) transform repre- 
sent the random arc and the degree to which the pat- 
tern spectra and their moments represent the random 

set. An advantage of granulometric representation is 
that individual granulometric features are often asymp- 
totically normal with known asymptotic distributions 
[5, 61. An advantage of Fourier descriptors is that, 
except for compression resulting from choosing a fi- 

nite number of coefficients, the Fourier transform can 
be considered to be invertible for practical modeling, 
whereas the granulometric transform is not generally 
invertible and general conditions regarding its invert- 
ibility are unknown. 

3. RECONSTRUCTIVE 
MULTIPARAMETER OPENINGS 

The signal-union-noise model consists of a signal ran- 

dom set S, noise random set N, observed set S U N, 

and filter 9. \k‘ (S U N) estimates S and the goodness 
of the estimate is measured by some probabilistic error 
criterion. We consider the granular model SUN, where 

s = (J C[Sj] + xi, N = (J o[nj] + yj (6) 
i=l j=l 

I and J are random natural numbers; ~1, ~32,. . . , SI 

and ni,nz,..., nJ are identically distributed to ran- 

dom vectors s = (si, sz, . . . ,s,) and n = (ni, n2,. . . , 
nm), respectively; C[s;] and D[nj] are random compact 
grains (connected components) governed by si and nj, 
respectively, and identically distributed with the pri- 

mary grains C[s] and D[n]; and ti and yj are random 
points governing grain locations (translations) under 
the constraint of grain disjointness. 

If signal components are probabilistically larger than 
noise components and we focus on the decision to pass 
or not pass a component in the observed image, then it 
is appropriate to consider optimization of reconstruc- 
tive granulometric filters. If {Qt} is a multiparame- 
ter granulometry, then the corresponding reconstruc- 
tive granulometry {A,) is defined componentwise by 

fully passing any component not entirely eliminated by 
Qt and eliminating any component eliminated by Qt. 
Optimization with respect to a reconstructive granu- 
lometry is achieved by finding t to minimize the ex- 

pected error E[v[ht(S U N)As]], A denoting symmet- 
ric difference. The optimal filter is a reconstructive 
multiparameter r-opening. 

The signal and noise pass sets are defined by MS = 
Mq.1 = {t: &(C[s]) = C[s]} and MN = Mo[,] = 
{t: &(D[n]) = D[n]}, respectively. Filter error for the 
parameter t is given by 

e(t) = E[I] . . . 
s J 

4CbllfsWs 
I- {,“:t4Mc[.I) 

4WWN(n>dn 

(7) 
where E[I] and E[J] are the expected numbers of signal 

and noise grains, respectively, and fs and f~ are the 
multivariate densities for the random vectors s and n, 
respectively [7]. 

The multivariate size distribution for the signal S 
and its mean are given by 

(8) 

E [@s(t)] =E[I] 
I J 

. . . 4wlfsb)ds (9) 
ts:tEMcl.]l 

and similarly for the noise N. Hence, with HS and 
HN denoting the expectations of the inverted signal 

and noise size distributions, and A denoting expected 
image area, filter error is given by 

e[t] = A - E[@s(t)] + E[@N(t)] = Hs(t) + A - HN(t) 
(10) 

Assuming that Hs and HN are sufficiently regular (which 
is often the case), 

11 
J J 

‘,a 
e(t)= 

a”Hs(ul, . . . , u,) 
. . . 

dUl...dU, 
dul...dun 

0 coo 
+ A- 

J I 

O3 PHN(u~,...,u,) 
. . . 

dUl...dUn 
dul . . .du, 

11 1, 
(11) 

For a univariate granulometry, the random sets MS 
and MN are replaced by the granulometric sizes MS = 
sup{r : &(C[s]) = C[s]} and MN = sup{r : A,(D[n]) 



= D[n]}, th e d omains of integration in Eq. 7 become 
the regions r > MS and r 5 ~$fj~, and 

t 
e[t] = J H’s(u)du + 

0 J 
00 

Hh(u)du (12) 
t 

if Hs and HN are sufficiently regular. Suppose we wish 
to choose t to minimize the error. If it happens that 
there exists to such that H’,(t) 5 H&(t) for all t 5 to 
and H$(t) 2 H$,,(t) f or all t 2 to, e[t] is minimized for 
t = to. If there does not exist such a point to, one may 
still be able to find a minimal error over all reconstruc- 
tive univariate r-openings; however, it is better to use 
a reconstructive granulometric bandpass filter. 

4. GRANULOMETRIC BANDPASS 
FILTERS 

Consider an upper semicontinuous, distributive Eucli- 

dean (univariate) granulometry {qt}, noting that, if 
{Qt} has a finite generator of compact, convex sets, 

then {i&t} is U.S.C. The continuous granulometric spec- 

trum of set S relative to {\Et} is defined for t 2 0 by 

St = f-J *t(S) - Q,+,(S) = @t(S) - (J %+/b(S) 
h>O h> 0 

(13) 
Each St is called a spectral component of S. The spec- 
tral components partition S. For any t-interval 1, the 

spectral band Gs(l) of the image S determined by {Qt} 
is the union of the spectral components over 1. A 

countable-interval subset of [0, co) is a subset II C [0, 00) 
that can be expressed as a countable union of disjoint 
intervals Iii, where singleton point sets are intervals of 
length zero. Without loss of generality we assume that 
i 4 j implies that, if t E Iii and T EIIj, then t < r and 
there exists s 6 II such that t < s < T. This assump- 
tion means that Iii is to the left of III~ and that Iii 

and IIj are separated by II’, which we denote by X . If 
{Qt} is an U.S.C. distributive Euclidean granulometry 
and II is a countable-union subset, then the continuous 

granulometric bandpass filter An is defined by 

An(S) = u St = (j Gs(Hi) (14) 
ten i=l 

where, the second union may be finite [8]. II and X are 
the pass and fail sets for An. X has a decomposition 
similar to that for II: X = Uj Xj . 

In general, Hs(t) is an increasing function oft and 
Hs(0) = 0. We assume HS is of bounded variation 
and continuous from the left. Then HS is continuous 
except on at most a countable set, HS is differentiable 
a.e., H’, is integrable, and HS possesses the Lebesgue 

decomposition Hs(t) = KS(t) + AN(t), where KS is 
increasing, K$(t) = 0 a.e., As is increasing, As is ab- 
solutely continuous, AS is differentiable a.e., and As(t) 

is obtained by integrating H’, from 0 to t. We assume 
the singular part KS is a step function with a countable 

number of steps and denote the jump at t by Js(t). 
The following error representation applies when the 

observed image is S U N, signal and noise are compact, 
and Sn N = 8: if countable-union pass and fail sets are 

decomposed into sets of intervals (al, bl) , (~2, b2) , . . . 

and(cl,dl),(c2,d2),..., respectively (where angle bra- 
ckets indicate that. it does not matter whether or not 
the endpoints are included in the interval), then 

e[An] = 2 /“’ Hh(u)du + 2 J”j Hi(u)du 
i=l (1, j=l CJ 

ten tex 
(15) 

Let D[q and D[N] denote the sets on which Hs 
and HN are differentiable, respectively. The point sets 
at which As and AN are differentiable include D[fl 
and D[N], respectively. KS and KN each have a count- 
able number of jumps, their jump sets to be denoted 
by J[fl and J[N], respectively. For the U.S.C. dis- 
tributive Euclidean granulometry {Qt} and the dis- 
joint, compact signal-union noise model S U N, we de- 
fine the {3t}-induced pass set II(Q) by t E II (a) if 
and only if one of the following three conditions is sat- 
isfied: (i) t E D[5’l n D[N] and A’,(t) 2 Ah(t); (ii) 

t E J[SJ-J[N]; (iii) t E J[qnJ[N] and Js(t) 2 JN(t). 
The corresponding fail set is X (Q) = II (Q)“. The cor- 
responding filter, he, is called the {Qt}-induced filter. 

A, is optimal in the sense that it has minimum error 

among all granulometric bandpass filters induced by 
countable-union subsets: if II (\k) is a countable-union 
subset, then e[Ae] 5 e[An] for any other countable- 
union subset II [8]. For this theorem to make sense, 
II (@) must be a countable-union subset. Since Hs and 
AS need only be differentiable a.e., we need a practical 
sufficient condition for II (V!) to be a countable-union 
subset. If Hs and HN possess continuous derivatives 

except on sets without limit points, then II (4) is a 

countable-union subset. 
It is common for inverted-size-distribution means to 

have no singular part. In this case, the induced pass 
set is defined by 

II (f#) = {t : H’s(t) 2 Hh(t)} (16) 

If either derivative fails to exist or the derivatives are 
equal at 1, then the choice of pass or fail set for t is 

irrelevant. Furthermore, if II (rk) = Ui (a;, bd), where 

bi < ai+1 for i = 1,2,..., then the induced optimal 



filter is given by 

The bandpass nature of the filter is evident. 

More can be said if we interpret the mean deriva- 
tives as generalized functions. Assume HS and HN are 

continuously differentiable except on sets without limit 
points. By definition of II (Q), we can ignore points 

outdide DS,N = (D[Sj n D[N]) U J[Sj U J[N]. At such 
points, Hs and HN are continuous but do not possess 
derivatives. Under the hypothesis, all such points are 
isolated and their inclusion or lack of inclusion in H (Q) 
has no effect on the error. Moreover, the jump points 

of KS and K,v are isolated and therefore KS and Ii’N 
can be represented as generalized functions. Hence, on 
Ds,N, H’, has the representation 

H’,(t) = 2 Js[ts,$(t - ts,i) + A’,(t) (18) 
i=l 

where J[$l = {ts,l, b,2,. . .} . HIN has a similar rep- 
resentation. With the usual interpretation of impulse 
functions and their intensities, t E H (\Ir) if and only if 

H;(t) 2 Hh(t), as in Eq. 16. 
There is a clear analogy between granulometric band- 

pass filters and the Wiener filter in the wide-sense- 
stationary signal-plus-noise model wit.h uncorrelated 
noise [8, 91, and this analogy is expressed via the char- 
acterization of Eq. 16. In the latter model the fre- 

quency response of the Wiener filter is given by Ss/(Ss+ 
SN), SS and SN being the power spectral densities of 
the signal and noise, respectively. A realization z is 

observed and the inverse Fourier transform 

%+l, w2) = 
%(w 7 w2) 

%‘(Wl,W2) + SN(“‘l,u2) 
F’[zl(u11 w2) 

(19) 
is taken as the Fourier transform of the signal estimate 
@. If the frequency response is rounded to 1 or 0, then 
the situation is akin to passing or not passing granule 

metric spectral components: a frequency component is 
passed if and only if Ss 2 SN and this binarization of 

the Wiener filter determines the passbands. Since the 
power spectral density is the Fourier transform of the 
covariance function, the optimal linear (Wiener) filter 
is determined by the covariance function, whereas the 
optimal granulometric bandpass filter is determined by 
the mean of the inverted size distribution. 

5. CONCLUSION 

We have summarized salient propositions from the the- 
ory of granulometric transforms and shown how appli- 
cation of these transforms corresponds to applications 

of Fourier transforms for both classification and opti- 
mal filter design. There are also similarities between 

adaptive granulometric filters [lo] and adaptive linear 
filters (and neural networks); however, owing to space 
and our desire to focus on transform methodology, we 

have not discussed adaptive granulometric filters. 
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