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ABSTRACT - A methodological approach to the definition 

of nonlinear circuits for real-time image processing is 

presented. The image processing problem is formulated in 

terms of the minimization of a functional based on the 

Markov Random Fields (MRFs) theory. The terms of such a 

functional are related to the co-contents of proper nonlinear 

multiterminal resistors, thus reporting the minimization 

process to the achievement of an equilibrium solution in a 

circuit made up of these multiterminal resistors and of 

linear capacitors. 

Coupled image restoration and edge extraction in the 

presence of additive gaussian noise are the specific 

problems addressed in this paper. 

1. Introduction 

One of the emerging ideas for performing low-level vision tasks 

in ,applications with tight real-time requirements is to obtain 

analog image processing by dedicated nonlinear analog circuits 

[l]. The theoretical efforts regarding these topics are also 

justified by the advances in VLSI technology, that allow the 

integration of complex circuit architectures on a single chip. 

As shown in [2], many ill-posed early vision problems (e.g., 

optical flow computation, edge detection) can be solved by 

minimizing functionals H which are a weighted sum of two 

terms, i.e., H = HI + hH2, according to the regularization theory. 

The term HI, called regularization term, restricts the class of 

admissible solutions by introducing suitable a priori knowledge. 

The term HZ, called data term, constraints the solution to 

remain close to observed data. The weighting coefficient k 

controls the compromise between the degree of regularization of 

the solution and its closeness to the data. 

The literature numbers some circuits that minimize, in an 

analogic and parallel way, functionals structured as H (see, 

e.g., [3]). The general aspects concerning analogue networks 

for solving ill-posed variational problems in early vision were 

extensively discussed in [2,4] starting from Maxwell’s 

minimum heat theorem. 

The functionals considered here are built up on the basis of the 

Markov Random Fields (MRFs) theory. In these functionals, the 

regularization term takes into account the statistical properties 

of the solution space and the term 1LH2 is formulated starting 

from the probability distribution of the noise affecting the data 

PI. 

The specific class of MRF image processing models addressed 

in this work is oriented to coupled image restoration and edge 

detection in the presence of zero-mean additive white gaussian 

noise with variance c?. The general elements concerning the 

structure of the functionals are described in [5]. Under the 

hypothesis that each pixel jk of a given MxN image interacts 

directly with those contained in its neighbourhood set Njk , the 

functional H can be written as 

H*(X,B) = H;(X,B)+hH2(X) 

with 

(1) 

j=l,..., N p.q EN 
k=I....,M Jk 

Hz(X)= C (Yjk -xjk)2 

jl,...,N 
k=I.....M 

(3) 

where 

Ujkpq = (xjk - +$A 

h(u,b) = bu* + v(b) 

(4) 

(5) 



bjkw and xjk are elements of the fields B and X, respectively, w 

is a proper function, A is a positive constant, h = 1/20z is the 

regularization parameter, and y# denotes the noisy gray level of 

the pixel jk before image processing. A method for simplifying 

the rather complex minimization required by [5] and similar 

approaches (e.g., [6]) has been recently presented [7]. Such a 

method allows to reconduce the original functional H; (X, B) 

to a functional HI(X) that depends on one set of variables only: 

H](X)= C C @(“jkpq) (6) 
j=L...,N p,qE Nj, 
k=l....,M 

Starting from this basis, we propose a method to synthetize a 

nonlinear circuit solving the minimization problem. The circuit 

contains two nonlinear multiterminal resistors %t and 32 and 

linear capacitors, as outlined in Figure 1. Well-defined 

relationships hold between the MRF functional defining the 

image processing method and the potential (co-content) 

functions associated to the resistive parts of the nonlinear 

circuit. These potential functions are homologous to HI(X) and 

hHz(X). This leads to synthetize the multiterminal resistors as 

corresponding to a specific image processing problem. In the 

circuit, the stationary values of the capacitors voltages 

individuate the position of a minimum of the functional H(X). 

Figure 1 

Then, the minimum of the specific MRF functional can be 

interpreted as an equilibrium state of the circuit. 

As sketched out in Figure 1, one of the multiterminal elements 

is obtained by a grid of identical nonlinear two-terminal 

resistors. The nonlinear characteristic of these resistors is 

related to the nonlinear nature of the terms in the functional 

H,(X). If, in the considered MRF model, each pixel jk interacts 

directly only with the four closest ones, then, in the rectangular 

grid of two-terminal elements, each node is connected directly 

only to the four closest ones (first-order neighbourhood set). 

The analogic image processing performed by the circuit has the 

following two main advantages: 

- the circuit yields a noise-robust solution for the considered 

problem, thanks to the intrinsic properties of the MRF 

approach; 

- the circuit structure implies purullel processing. 

The computer simulations performed evidence the ability of 

the circuit to yield real-time solutions for the considered 

problems. The main dynamic properties of the circuit have 

been obtained making reference to the properties of the 

nonlinear resistors characteristic. 

2. Definition of the circuit structure 

2. I The resisitive multiterminal 311 

The MXN nodes of the grid are connected to terminals. The 

resulting MXN-terminal resistive network is denoted by 31. All 

the resistors are identical and voltage-controlled. The behaviour 

of ‘%I can be described in terms of the MXN node voltages Xjk 

with respect to a common node P, as shown in Fig. 1. These 

voltages individuate a complete set [S] of variables. For this 

circuit the global co-content function 91 is given by the sum of 

the co-contents of the nonlinear resistors [8]. Denoting by i = 

L(v) the voltage-controlled characteristic of each resistor, the 

corresponding co-content term &(v) is 

” 

6 (VI= C(P) dp I 
0 

(7) 

By means of the grid resistors, each inner node jk interacts 

directly with those individuating the neighbourhood set N#. hr 

the case of first-order neighbourhood set, for instance, we have 

Njk = (&k-l), (i-k+]) , (i-l,k) , (j+l,k)]. 

Denoting by jk and pq the terminal nodes of one of these 

resistors, the pertinent voltage v is given by xjk - xpq and the 

global co-content $Zr can be thought as a function of the vector x 

of the node potentials 



j=l,...,N pqc Njk 
k=l,...,M 

The structure of $ (x) is identical to that of the term HI(X) in 

expression (6). 91 (x) corresponds to a given HI(X) when a 

proper characteristic c(v) for the nonlinear resistors is 

individuated. 

The relation between the co-content term 6 and the normalized 

term a(u) (ranging in the interval [-l,O]) in equation (6) can be 

formulated as follows 

&(UVT) = 6s [aqu) + 11 (9) 

The variable u = v/Vr is a dimensionless term defined by taking 

A = V-r (see expression (4)) and the terms VT and 

i, = sup 6 (v) are normalizing constants. 
V 

The derivation of the characteristic i = c(v) from a given 

H r (X, B) can be obtained as follows. 

We first observe that the expression (2) for Hf;(X,B) yields 

the function h(u,b). The next step consists in obtaining the event 

function m(u) according to the following condition [7] 

@(u) = inf h(u,b) (10) 
OSbSM 

b 

From a geometrical point of view, m(u) can be interpreted as 

the infimum of a b-parameterized family of quadratic functions. 

Then, following [7], the function 

f(z)=@(&)= inf [bz+\y(b)] z,u~[O,+=) (11) 
OSblM 

b 

is thought as the lower envelope of a one-parameter affine 

family. 

For any given b E [O,M,], and for z E [O,+m), the conditions for 

the function f(z) to be tangent to the b-parameterized family of 

straight lines bz + v(b) are 

f(z) = bz + W(b) (12) 

df 
-=b 
dz 

(13) 

By combining these two conditions, a Clairaut’s differential 

equation [9] for f(u) is obtained: 

(14) 

Instead of considering the general solution (family of straight 

lines) of equation (14), we refer to the particular solution 

(envelope of the family of straight lines) that results by 

eliminating the parameter b from the system of equations 

f(z) = zb + v(b) 
W(b) 

z+-= 0 
db 

Thus, according to definition (1 I), the even function Q(u) is 

obtained as f(z2). 

As stated in the previous section, the function 0(u) can be 

interpreted as the normalized co-content of each nonlinear 

resistor inside 31. From expressions (7) and (9), then, we find 

(16) 

2.2 The resisitive multiterminal 32 

The term AH*(X) in expression (1) can now be considered. As 

previously stated, this term forces the xjk variables to remain 

close to the observed data yjk representing the image to be 

filtered. Being the yjk’s fixed terms, then, also hH2(X) can be 

4 

iRjk 
interpreted as the co-content of a 

cl 

proper resistive network 5%. 

Elementary considerations lead to 
R 

“Rjk”jk 
represent the term h (yik - xjk)2 

+ through the two terminal voltage- 

yjk controlled resistor Rjk represented 

in Fig. 2 (see also [3]). The co- 
Figure 2 

content of Rjk can be written as 

I 

fijk (xjk) = z 
2 

(Yjk-"jk) -yjk 
2 

I (17) 

The network %2 is made up of MXN resistors R$ , as shown in 

Fig. 1. Each of them is connected between the reference node P 

and the pertinent terminal jk of ‘%I. 



The co-content @ (x) of 332 is given by the sum of the MXN 3. An example 

In order to simulate the behaviour of the complete nonlinear 

circuit, we define the lower and upper limits for the x,,‘s 

voltages as xmin and x..” , respectively. Then we take the scaling 

relation g2(x)=i, C (Yjk -Xjk)2-L C Yik (18) 
J=~,....N 2R j=l N 
k=l.....M k=i,..:,M 

The last term of this expression is constant, so that it does not 

take part to any minimization process. For this reason, the 

structure of @ (x) can be considered equivalent to that of 

H2W. 

The term IH2 in expression (1) can be built up by using the co- 

content terms A jk (see expression (17)). 

The comparison between AHz(X) and the corresponding sum of 

the dimensionless functions 

njk (x) = & fijk(x) 

@S 

leads to identify the relative weight h as 

1 
k=- 

2R&g 
(20) 

In the case of null-mean gaussian white noise with variance d, 

the maximum a posteriori criterion [7] leads to assign the 

regularization parameter h the value l/2&. Then, the second 

term in equation (1) can be written as 

1 
c 

2 

2 (Yjk -Xjk) 
2o j=l,...,N 

k=I,...,M 

(21) 

Comparing this sum with that originating by the iljk and 

ignoring the constant term (see expressions (17), (18) and (19)), 

we obtain 

2 

R=; 

@S 
(22) 

that directly relates the circuit parameter R to the variance of 

the noise model through the reference power $. 

x jk = fjk xma2;5xrnin + Xmin (23) 

between the gray levels fit E [0,255] and the corresponding 

-1 0 1 
U 

Figure 3 

voltages x,~. 

Fig. 3 shows a classical example of Q(u) corresponding to 

functions h(u,b) that allow image segmentation and edge 

detection. As it can be simply verified, the corresponding co- 

content @ can be obtained by choosing for the nonlinear 

Figure 4 

resistors of 331 the piecewise linear characteristic i = c(v) of 

Fig. 4. In this case, 6’S = IcVc I 2. 



The slope VO / 41 of the central region in Fig. 4 multiplied by C 

can be arbitrarily taken as a rough reference term ‘t for the 

definition of the time scale at which the circuit works. 

As an example, a circuit defined by N = M = 256, V,= 2V, = 

0.8V, I, = 0.8mA, C = lnF, vmin = 0 and vmu = 1OV is simulated. 

b) 

4 

Figure 5 

Figure 5a shows the original (uncorrupted) image. Fig. 5b 

shows the image to be processed, obtained by corrupting the 

image of Fig. 5a by gaussian noise G@,o), with l.t = 0 and cs = 

15. Starting from the initial capacitor voltages vj,(0) generated 

through expression (23). the circuit simulation gives, after few 

multiples of ‘T, the steady-state values corresponding to the 

image in Fig. 5c (first-order model). The image in Fig. 5d is the 

result obtained by extending the neighbourhood set to eight 

pixels (particular case of second-order model). In particular, 

four other nonlinear resistors with a characteristic i = c(v)/2 

connect each pixel jk to the four pixels [j-2,k ; j+2,k ; j,k-2 ; 

j,k+2} too. As expected (see, e.g., [7]), the first-order model is 

very efficient at detecting first-order discontinuities, while the 

second-order model is more efficient at reconstructing the basic 

geometric structure of the original intensity surfaces. 
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