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ABSTRACT 

In this paper we describe a nonlinear criterion designed 
for the detection of changes (“edges”) in signal or image 
properties in a framework that we call the distinction 
evidence method. It was introduced as a generic 

feature extraction tool for image modeling. We show its 
capabilities when applying it to segmentation, texture 
border finding and object correlation problems. 

1. INTRODUCTION 

In a previous article [l] we considered the criterion in 
an edge finding framework and analyzed its accuracy 
and robustness as an edge detector wit.h criteria equiva- 
lent to Canny’s [2] localization and SNR. In this article 
we will make the link to region segmentation applica- 

tions, since it is often desirable that region segmenta- 
tion and edge finding segmentation give similar results, 
which is not trivial because they are differently formu- 

lated. Since our decision criterion uses concepts from 
both worlds, it will be a good candidate for consistent 

edge finding-segmentation. We will derive our criterion 
from a. correlation point of view, which will lead to fur- 
ther interesting applications when specific shapes have 
to be extracted. We will also comment on the crite- 
rion’s nonlinearity and its use in texture applications. 
A s’ingle method capable of handling all the mentioned 

problems is useful because real images contain a mix- 
ture of all the cases, and a simple generic strategy is 

also highly desirable in adaptive applications. We will 
primarily focus upon the principles and will sometimes 
drop illustrating results, because of the limited length 

of the paper. 

2. GENERAL DESCRIPTION OF THE 
DISTINCTION EVIDENCE METHOD 

To see if the image properties change, we will com- 
pare a region with a nearby region. For the simplest 
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feature extraction we will consider only the histogram 

of the regions and not the geometrical position of the 
particular pixel values. In the case of homogeneity, 
the histograms in the two regions are similar to each 

other. If there is a significant property difference, this 
will manifest itself in the difference of the histograms of 
the two regions. In the case where spatial correlation 
information is important, a simple preprocessing will 
suffice to incorporate the necessary information in the 
histograms of the pretreated image regions. 

The distinction evidence method typically runs as 

follows: 

1. Generate two sample sets in supposedly different 

regions. E.g. for a boundary polygonalization 
we postulate (predict) the existence of a linear 
edge segment, called separator 9 (shown dashed 

in Figure l), characterized by a starting point 
(~0, yo), an associated angle (Y and length 2. Around 
this separator we construct 2 rectangular sam- 
pling regions with width w (Figure 2). 

Figure 1: Evaluation of goodness of fit of separator 9 
to a local boundary 

2. Calculate the decision or gain value associated 

with this separator 9 by means of formula (1). 
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The decision value or gain G is the sum (over all 

“color” values i E N(T) ) of the absolute values 
of the differences between the number of pixels 

with color i in RI (namely CZ?l(s)) and in R2 

(namely CZ~‘@) ). The i’s are appropriately cho- 

sen by defining a set of input thresholds T de- 
pending on the application, from which we can 
calculate the class i of a gray value g by means of 

Tj 5 g < Tj+l + i(g) = i. In adaptive applica- 
tions these thresholds could be calculated during 

runtime, but we don’t consider such applications 
in this paper. We use the name color for any nu- 
merical value: e.g. the image may contain the re- 
sult of some texture feature preprocessing, upon 
which we calculate the gain function. The as- 
sumed “objects” (or segments) on either side are 
hence characterized by means of their histogram, 
and the difference of these histograms (1 minus 

histogram overlap) is calculated as a measure of 
the difference of the object regions RI and RZ 
(Figure 2), rather than just the difference be- 
tween weighted average gray levels, as in most 
classical edge detection techniques. 
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Figure 2: Statistical interpretation of the decision cri- 
terion G. 

The histogram overlap can be intrinsic due to the 

particular object boundary and noise, or because 
of a mislocalization of our predicted separator 9. 

We have used formula (1) in an edge walidator, 
which yields a 1 or 0 for the existence of the edge 

under the associated postulates (4, w). In prac- 
tice depending on the gain outcome, which will 
be somewhere between 0 and 1, we will make the 
interpretations { clear detection, clear evidence, 
doubtful evidence, clearly no feature }, with out- 
put thresholds (not to be confused with the input 
thresholds) that we choose corresponding to the 
particular application. 

3. Generate a new prediction in such a way that in 
the end we will have found all the edges. We can 

use a classical scan or a more advanced search 
strategy. 

3. DEVELOPMENT OF THE GAIN 
FUNCTION FROM A CORRELATION 

POINT OF VIEW 

Binary matching, or in other words verifying whether 
two binary patterns are the same, is a simple problem, 
for which the normalized match index [4] was devel- 
oped as a powerful tool. If WC only reward the matches 
and do not punish the mismatches (formula (2)), the 
result can vary between 0 and 1, and if we match pix- 
els whatever their position (i.e. Nfit just counts the 
number of paired say black pixels on either side), we 
can use formula (2) for the edge detection strategy ex- 
plained in paragraph 2 in case we only work on binary 

images. 

c= 
Nfit 

Nfit + Nnonfit ; G=l-C (2) 

The analog concept for gray value images is the cor- 
relation. If for a certain pixel more bitplane values 

match, the partial pixel correlation value will rela.tively 
be higher. However the sensitivity of the correlation 
value to image pixel value changes, as compared to the 
correlation template values, is low when the pixel val- 
ues are high, and vice versa. We would like another 
extension to gray value images, which keeps the idea of 
bina.ry acceptance/rejection counting. The basic idea 

is to map the gray value image to a binary image, 
by labeling the pixels as [Non Changed, Changed] in 
the edge detection paradigm and [LeftObject, RightO- 
bject] in the segmentation paradigm. We therefore in- 
troduce the concept of majority colors as colors that 
characterize better a certain object since there are more 
pixels with this color in the object region (e.g. left rect- 
angle) than in the other region. We can then in each 
sampling region identify three types of pixels: major- 

ity matching (I), majority excess (11) and minority 

matching pixels (III). We then define the match as: 

c= 
N’ + N”’ = Ntot - N” 

Ntot Ntot 
(= 1 _ excess) 

Ntot 

and the difference (gain) as: 

excess 
G=-= 

CiEN IN: - Ni”I 
Ntot Ntot (3) 

where the Ni in formula (3) are the Ci of formula 

(1) . 



4. NONLINEARITY 

Even for the simplest application, which just takes the 
difference of the histograms in a binary image, the ab- 
solute values make the criterion(l) nonlinear. Since the 
criterion(l) is blind to the exact numerical “color” val- 
ues: we investigate the appearance of the nonlinearity 
when we add measurements on different parts of the 

image together. 

Figure 3: Composition of a larger sampling set from 
two smaller ones. 

Suppose that a larger sampling window consists of 
the windows 1 and 2 on t.op of each other as depicted 
in Figure 3, with respective areas Al and AZ. In the 
left half of window 1 there are N black pixels and in 

the right n, etc. We calculate the partial gains G1 
in the upper and GS in the lower pair of rectangles. 
When the majority of black pixels is not in the same 
half of windows 1 and 2, the linear formula (4) yields 
a different result than formula (1) due to the absolute 
difference in formula (1). 

G = (N+M-n-m) = (N-n)+(M-m) 
A1 + A2 Al + -42 

AIGI + Ah’2 = 
Al + A2 

(4) 

Of course when several “colors” are sampled, lin- 
earity will almost certainly be violated. 

The nonlinearity has some interesting aspects. Our 
basic conjecture is that to model images, which are 
formed by highly nonlinear processes, we need a non- 
linkarity in the first level detection algorithm. Nonlin- 
earity is necessary to clearly separate the objects from 
the background. An edge validator can only be robust, 
i.e. give a correct edge validation irrespective of the 
particular edge details in the image, if it is nonlinear. 

The above described nonlinearity means that the 
detector validates naturally the edges on all scales in 
scale space (where w and also 1 determine the scale), 
always yielding perfect localization for clear edges, i.e. 
edges that are not curved. Our criterion forms a good 
basis for a general edge definition, which is considered 
to be a fundamental problem in image processing, since 
the lower values of the gain can be mathematically ex- 
pressed in terms of histogram overlap, edge jaggedness 
and also parameter misestimation. The price to pay 

for the nonlinearity is that our experiments to develop 
a Hough transform-like evidence collection scheme, to 
estimate bigger line segment parameters from measure- 

ments on many small segments along the bigger line, 
didn’t give very satisfactory results on small scales. 

The fact that the gain is normalized means that we 
can suppress the less relevant, noisy local maxima. A 
normalized measure is perfect for the parameter esti- 
mation in modeling, since we know we have to converge 
to a definable high G value of nearly 1. Having a nor- 
malized value means that we do not necessarily need 
to look for local maxima (of G(so, yo, LY, 1)), but we can 

make statements on the basis of a single evaluation. 
This opens the door to more advanced flexible edge 
finding strategies, like random or object driven image 
search or connectionist systems. E.g. the normaliza- 
tion can be used to tackle the multiple optima problem 
when using a genetic algorithm search strategy. 

Another useful property is the non zero contribu- 
tion of the noise, which of course always contains some 
edginess. This led us to a principle where we add noise 
with predetermined properties for an optimal detec- 
tion in vaguely situated regions of the image where we 
suspect certain boundaries to be present, to enhance 
the detection of the boundaries as in stochastic reso- 
nance [3]. Suppose that in a medical application we 
know more or less where the wall of say a heart should 
be, but that it is not imaged clearly. We might then add 
some noisy pixels in that region to force it to become 
visible. Since it is not an easy thing to do we don’t 
know whether this concept will evolve from principle 

to practice. 

5. USE AS AN IMAGE SEGMENTATION 
TOOL 

In our framework the distinction between the edge find- 
ing and segmentation approach is very subtle, since in 
both cases we calculate edges. The first difference lies 
in the way we manipulate the bins that collect the his- 
togram counts (Figure 2). For segmentation we will 
specify meaningful input thresholds, so that all gray 
values between two such thresholds belong to the same 
class i, whereas for edge detection we will blindly spec- 
ify a number of equidistant threshold values. The sec- 
ond difference lies in the generation of the global seg- 
ments. 

In a noisy image there will be many different color 
values, so small sampling regions in a homogeneous re- 

gion have a considerable probability of generating large 
gain values. One solution is to enlarge the sampling re- 
gions, another is to reduce the number of colors/bins. 
This can be done globally by quantizing more coarsely. 



We will retain the larger amplitude edges and destroy 

the smaller ones. Another possibility is to reduce the 
number of colors locally, retaining in each two region 
sample set e.g. 4 values. In a homogeneous region we 

will then find more or less equal numbers of all col- 
ors in both regions, whereas near an edge the colors 
should be more organized geometrically. Although we 
call the equidistant thresholds approach the edge fmd- 
ing approach, it can also lead to a segmented image of 
course. The more meaningful thresholds for the seg- 
mentation approach can be obtained as follows. In a 

stamp detection application e.g., we can investigate the 
distribution of the colors of the white border of stamps 
for a number of typical stamps and select based upon 
this data a number of thresholds pinpointing this bor- 
der histogram. In the example of Figure 5, we con- 

trasted the typical dark pupil pixels with the lighter 
eye white “background” pixels, by putting them in dif- 
ferent histogram bins. 

The distinction evidence method can detect at least 

three types of edge important to (human) vision: 

Large intensity changes can be quickly found in 

a coarse quantization. 

Very small differences in a geometrically precise 

sampling setup can be detected (e.g. a dark truck 
against the black background at night). 

Significant values, e.g. outliers, specular reflec- 

tions, can be detected by putting a threshold just 
around their extremal values. 

Even large amounts of interference typically occur- 

ring in real life image processing applications, like e.g. 
raindrops on the camera, need not be disturbing in a 
good experimental setup. We can neglect these colors 
and accept as clear edge evidence the lower gain values 
resulting from the fewer true object pixels between the 
raindrop pixels. Figure 4 shows the result of a segmen- 
tation setup, where we used three equidistant global 
thresholds, quantizing the peppers image to three col- 

ors. 

6. ROBUST CORRELATION 

Figure 4: Example of a segmentation application on 

the peppers image. 

different sizes, shapes and threshold combinations. But 
we need only calculate e.g. a set of semicircular mask 

shapes with different radii, while always evaluating the 
same gain function on the obtained sample sets. As we 

can see in Figure 5 both eyes, and only the eyes, give 
a clear detection maximum. 

If we also take the sampling region shapes into ac- 
count, matching them with the desired object struc- 

tures, we get a robust correlation approach. In the ex- 
ample of Figure 5 the sampling regions were created in 
a pupil/iris (RI) and eye white (R,) shape, and the in- 
put thresholds were now chosen for optimal separation 
of the eye object values to find the two eyes of Lena. 
Remark that in this case the separator 9 is not a line 
segment. In a more general case we would have to test 

Figure 5: Output of eye detection and geometric shape 
of sampling regions (inlay). 

7. TEXTURE DISCRIMINATION 

The distinction evidence method can be used as an al- 

ternative texture segmentation method directly on the 



image or as a post processing step on images precon- 
ditioned by other texture techniques. R.emember that 
after preprocessing the resulting image might still be 

too complex a gray value image to be analyzed by a 
simple technique like e.g. thresholding. In the direct 
applications two groups of methods can be used. The 

first just uses the rectangular setup of Figure 1, where 
the length and width of the sampling rectangles can fur- 

ther be chosen according to the texel scale. The gain 
function can then detect changes e.g. in variance, skew- 
ness... or more complex histogram properties. If neces- 
sary special combinations of the bin values can also be 
calculated. The second method applies sampling masks 
optimized to match the texel shapes. We show a few ex- 
amples of the rectangular sampling method (Figure 6), 
showing that the maximum gain clearly corresponds to 
the correct texture boundary. We have done experi- 
ments on 88 texture squares, with all kinds of texture, 
compared under exactly the same non optimized con- 

ditions, resulting in 79.5% of the edges being detected, 

86.5% of which were correctly localized. 

Figure 6: Detection of the boundary between two tex- 
tures . 

8. CONCLUSION 

We have developed a new distribution free edge deci- 
sion criterion, that bridges the gap between edge find- 
ing and segmentation. It can be used as a robust and 
versatile feature extraction tool, which seems difficult 
to achieve when using exact functional forms depend- 
ing on the numerical values of the pixels. Although in 
many cases the simple postulates like e.g. white Gaus- 
sian noise are maintainable, and averaging strategies 
are hard to beat, we looked for a criterion that is not 
hampered too much by violations of these postulates. 
In particular, the exact noise distribution as well as 
its autocorrelation do not matter, leading to almost no 
edge interference (see e.g. the texture experiments). 

On the other hand we can measure a lot of edge types, 
characterized by other parameter changes than the av- 
erage gray value, and having more information in the 
histogram makes our method more robust and versatile 
than methods which are based purely on the average, 
which is not a particularly useful descriptor for com- 
plex distributions. Geometrically the strategy is very 
simple due to the fact that it samples the pixels on 

equal basis, as we could see from the ease with which a 
particular sampling shape is chosen (e.g. the toothed 
boundary pattern of a stamp). The reader should com- 
pare our gain funct,ion with the complicated detection 
formula based on the Canny strategy used by Oakley 
and Shann [5], just, for the extraction of arc segments. 

For binary images (or well separated histograms) the 
criterion is analogous to the Prewitt edge finder, from 
which one can theoretically develop the other filters like 

Canny’s and Shen/Castan’s [6]. 
We think that the idea can shed more light on sev- 

eral theoretical aspects of image processing. Moreover 
we expect that due to its versatility, the method can 
be optimized to tackle many applications, and we es- 
pecially suspect it, to be useful in adaptive strategies. 
Since the criterion is computationally simple, fast hard- 

ware could be developed. 
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