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Abstract 

This work bridges the gap between activities 
motivated from statistical signal processing, 
neuromorphic systems, and microelectronic 
implementation techniques for blind separation and 
recovery of mixed signals. The composition adopts 
both discrete-time and continuous-time formulations 
with a view towards implementations in the digital as 
well as the analog domains of microelectronic circuits. 
This paper focuses on the development and formulation 
of dynamic architectures with adaptive update laws for 
multi-source blind signal separation/recovery. 

1. Introduction 

The theoretical results and formulations 
address the blind separation and recovery of signals in 
dynamic environments [I, 2, 31. We consider state 
space dynamic models to represent the mixing 
environment and consequently the adaptive network 
used to perform the signal separation and recovery. We 
employ dynamic models which are easily, and directly, 
adapted to discrete as well as continuous time channels. 
The presented environment model and the adaptive 
network allow for the case when the mixing 
environment includes (state) feedback and memory. 
The feedback of the state/output corresponds to Infinite 
Impulse Response (IIR) filtering in the discrete-time 
case. 

The work begins with performance functions 
as identified in the literature [4, 51. The emphasis of 
our method is in developing the network architecture, 
and the improved convergent algorithms, with a view 
towards efficient implementations. An improved 
approximation of the (nonlinear) mutual 
information/entropy function is used in order to ensure 
whitening and also to eliminate the assumption of 
output unit covariance. The improved expansion 
produces an odd polynomial in the network outputs 
which includes a linear term, as well as higher order 
terms-- all absent from the expansion in [6]. It should 
be noted however, that the work reported in [6], as well 
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as in [7] have addressed only the static case where the 
mixing environment is represented by a constant 
matrix. In [7], a formulation for an FIR filter was also 
converted into a static matrix mixing problem. 

2. Problem Definition 

We present a framework that addresses the 
blind signal separation and recovery (or de- 
convolution) in dynamic environments. The original 
work was motivated by the work of Herault and Jutten 
[8] and Comon [5]. Most of the recent results have 
focused primary on establishing analytical foundation 
of the results reported in [4, 51. Several researchers 
have used a host of analytical tools that include applied 
mathematics, statistical signal processing, system 
theory, dynamical systems and neural networks. The 
challenge still exists in generalizing the environment to 
more general dynamic systems. 

This paper focuses on extending the 
environment to include more realistic models beyond a 
constant matrix, and develops successful update laws. 
A crucial first step is to include dynamic linear systems 
of the Stare space which are more general than FIR 
filters and transfer functions due to the inclusion of 
feedback and variations in initial conditions. Moreover, 
these models lend themselves to direct extension to 
nonlinear models. Another motivation of this work is to 
enable eventual implementation in analog or mixed 
mode micro-electronics [9]. 

The summary gives a brief summary of the 
results developed. The formulation addresses the 
feedback dynamic structures, where the environment is 
represented by a suitable realization of a dynamic linear 

system. 

3. Dynamic Architectures 

Dynamic models encompass and describe 
more realistic environments. We have proposed 
feedforward and feedback architectures of the state 
space approach [l-3]. Throughout this paper, we shall 



refer to the mathematical model for signal mixing as the 
mixing environment, while we refer to the mathematical 
model for the signal recovery a.~ the (adaptive) 
network. 

The Feedforward Structure: 

Let the n-dimensional source signal vector be 
s, and the m-dimensional measurement vector be M. 
We describe the mixing environment by the Linear 
Time-Invariant (LTI) state space: 

The parameter matrices A, B , c and B are 
of compatible dimensions. This formulation 
encompasses both continuous-time and discrete-time 

dynamics The dot on the state x means derivative for 
continuous-time dynamics, it however means “advance” 
for discrete-time dynamics. The mixing environment is 
assumed to be (asymptotically) stable, i.e., the matrix 

7i has its eigenvalues in the left half complex plane. 
The (adaptive) network is proposed to be of the form 

X=AX+BM 

y=CX+DM, 

where y is the n-dimensional output, X is the internal 
state, and the parameter matrices are of compatible 
dimensions. For simplicity, let us assume that X has the 

same dimensions as ??. Figure (1) depicts the 
feedforward form of this framework. 

Figure 1. Feedforward Dynamic Structure 

The first question is the following: Does there 
exist parameter matrices A, B, C, and D which would 
recover the original signals? The answer now follows. 

Existence of solutions to the recovery oroblem: 

We state that the (adaptive) dynamic network 
would be able to counter act the mixing environment, if 
the network parameters are set at (or attain via an 
adaptive scheme) the following values: 

-- 
A=A*=T(A-B[D]C)T-’ 

B=B*=TB [D] 

c=C*=-[D] c T-1 

D = D* = [D] 

where [D] equals 

l D-’ : the inverse of D, if m = n, 

l (n ) -’ D -T; a pseudo-inverse, if m>n, and 

l DwT (DD’ )-’ : a pseudo-inverse if m < n. 

The matrices A*, B*, and C* can take on a 
family of values due to the nonsingular state-equivalent 
transformation T. We shall USC T to render the network 
architecture “canonical” or simple from a realization 
view point. This formulation in effect generalizes the 
formulations in the literature, which are limited to FIR 
filters, predominantly for 2-dimensional sources and 
two measurements, into general n-dimensional sources, 
and m-dimensional measurements. Note that, this 
modeling includes the FIR filtering models, and 
extends to IIR filtering if A is nonzero. 

While this feedforward form for the adaptive 
network is viable, we note a limitation for its 
applicability, namely, that the parameters of the mixing 
environment have to be such that the matrix A* is 
(asymptotically) stable. That is, for a stable mixing 
environment, the composite matrix of the adaptive 
network 

-- 
A*= A-B [D]C 

must be (asymptotically) stable, i.e., has its eigenvalues 
in the left half complex plane. It is apparent that this 
requirement places a limiting condition on the 
allowable mixing environments which may exclude 
certain class of applications! 

The Feedback structures: 

A more effective architecture is the so-called 
(output) feedback network architecture, see Figure 2. 
This architecture leads to less restrictive conditions on 
the network parameters. Also, because of feedback, it 
inherits several known attractive properties of feedback 
systems including, robustness to errors and 
disturbances, stability, and increased bandwidth. These 



gains will become apparent from the following 
equations 

1 z=Cx+Dy 1 

Figure 2. Feedback Dynamic Structure 

Existence of solutions to the recovery problem 

If y is to converge to a solution proportional 
(via a permutation matrix P) to s, namely, y= Ps, then, 
the following parameter matrices of the (adaptive) 
network will constitute a solution that recovers the 
original signals: 

A=A*=T AT-’ 

B=B*=Tjj’-’ 

C=C*= CT-’ 

D= D*= BP-‘-H 

In addition to the expected desired properties 
of having feedback in the architecture of the network, 
we also achieve simplicity of solutions to the 
separation/recovery of signals. In this case, it is noted 
that if the mixing environment is (asymptotically) 
stable then so would be the solution to the adaptive 
network. In this case, the architecture is not introducing 
additional constraints on the network. Note that H in 
the forward path of the network may in general 
represent a matrix in the simplest case, or a transfer 
function of a dynamic model. Furthermore, in the event 
that m = n, H may be chosen to be the identity matrix. 

The elements of the procedure and its 
advantages are now apparent. Further generalizations of 
the procedures for developing the architectures can also 
account for non-minimum phase mixing environments. 
These steps are straightforward application of the 
above procedure and hence will not be elaborated 
upon. 

An important generalization is to include 
nonlinearity as part of the architecture-- explicitly. One 
model is to include nonlinearity as a static mapping of 
the measurement variable M(t). In this event, the 

adaptive network needs to include a compensating 
nonlinearity at its input stage. Thus, the input must 
include an “inverse-type” nonlinearity to counter act the 
measurement prior to further processing. This type of 
mixing environment is encountered in wireless 
applications that include satellite platforms. 

With the dynamic architecture defined in the 
proper way, ensuring that a solution to the blind signal 
separation does exist, we now move to the next step of 
defining the proper adaptive procedure/algorithm which 
would enable the network to converge to one of its 
possible solutions. In this way, we are ensuring that if 
convergence takes place, the solution, the adaptive 
network would converge to, does exist and it is stable. 
Consequently, after convergence, the network will 
retain the variable for signal processing/recovery. 

4. Performance Measure/Function 

The mutual information of a random vector y 
is a measure of independence among its components 
and is defined as [4,5]: 

W = jf,(W 
f,(u) 

nif,("i)du 
(1) 

where f,, (y) is the probability density function (pdf) of 
the random vector y. The functional Z (y) is always 
non-negative and is zero if and only if the components 
of the random vector y are statistically independent. 
This important measure defines the degree of 
dependence among the components of the signal 
vector. Therefore, it represents an appropriate 
functional for characterizing (the degree of) statistical 
independence. I(y) can be expressed in terms of the 
entropy 

I(Y) =-H(Y) + CH(Yi) (2) 

where H (y) := - E[lnfJ, is the entropy of y, and E[.] 
denotes the expected value. 

5. Update Law for The Feedforward 
architecture 

The update law is now developed for dynamic 
environments to recover the original signals following 
the procedures in [2, 31. The environment here is 
modeled as a linear dynamical system. Consequently, 
the network will also be modeled as a linear dynamical 
system. 



The Feedforward Case: 

The network 
system as in Figure 1. 
performance index 

is a feedforward dynamical 
In this case, one defines the 

?T . 

J(x,w) = J$ (t,x,xJ ,W)df (3) 

where 1 is the Lagrangian and is defined as 

d(t,x,i,il ,w)=t)(t,x,w)+A T(;-Ax-Be) 

(4) 
where h(t) is the adjoint state equation defined by 

&-ATa+g (5) 

The functional $ may represent a scaled 

version of our measure of dependence I (y), w is a 
vector constructed of the rows of the parameter 
matrices C and D. Note that a canonical realization 
may be used so that B is constant. The matrix A, in the 
canonical representation, may have only N-parameters, 
where N is the dimension of the state vector X. The 
parameters, A, C, and D, represented generically by 

WP* will be updated using the general gradient 

descent form: 

aA? 
y;p=-q- 

dwp 
(6) 

Therefore, using the performance index defined in 
. Equation (2) , the matrices C and D are updated 

according to 

b= w-fa(Y)YTW (7) 

~=r(l-f,(Y)xT)C (8) 

where f,(.) is given by a variety of nonlinear expansive 
odd-functions which include hyperbolic sine, and the 
inverse of a sigmiodal function. In the specific 
computation/approximation performed in [2, 31, the 
function is given as 

f,(y) = Zy'5 -zEy'3 +yyll 2yy9 

941 , 47 5 
+yY +TY +Y3+Y (9) 

The essential features in using equation (9) are 
summarized as follows: (1) it is analytically derived 
and justified, (2) it includes a linear term in y and thus 
enables the performance of second order statistics 
necessary for signal whitening, (3) it contains higher 
order terms which emanate from the 4th order cumulant 
statistics in the output signal y, and (4) it does not make 
the assumption that the output signal has unity 
covariance. To date, to out knowledge, the function of 
equation (9) represents the only function used in the 
literature with the above characteristics. This function, 
therefore, exceeds the limitations of the other 
analytically derived function reported in [6]. 

Computer simulations confirm that the 
algorithm converges if the function defined in (9) is 
used. Example of computer simulations were reported 
in [2, 31. A variety of extensive simulations arc 
included in Gharbi and Salam [3]. 

The Feedback Case 

The (output) feedback architecture of Figure 2 
may be simplified in realization with the following 
(canonical) state-space representation: 

The environment: 

%i = Ai Ki + Ei 3, 12 iS L 
L 

M= Haiti + 5’s 
i=l 

The network: 

ki = Ai Xi + Bi y, 1 I i 5 L 
L 

Z= CCiXi + Dy 
i=l 

y=M-Z 

where each Xi represents a state vector of the 
environment of the same dimension as the source 
signals, and each Xi represents a state of the network 
of the same dimension as the output signal. For 
simplicity, we assumed the same number, L, of the state 
vectors in both environment and network. 

Now, using the performance index defined in 
Equation (2) , the matrices Ci and D are updated 
according to 

~=wD(-I+f,(Y)YT) (10) 

Ei = yq-4 +fJy)xT) (11) 



7. Conclusion A simpler update law which was verified to 

work in certain cases may be satisfactory in special 
applications: 

b= Tf,(Y)YT 

d, = Yfa(Y)xiT 

Computer simulations reported in [2, 31 were 

also performed to demonstrate the performance of 
equations (12- 13). 

It should be clear that the states may, in the 
simple FIR filtering, represent simple delays of the 
sources, while the states in the network represent delays 
in the fed back output signals. However, this view is a 
simple consideration of the delays of the signal that 
occur in real physical applications. The framework, 
therefore, is more general since it may consider 
arbitrary delays including those of IIR filtering and 
continuous-time physical effects. 

6. Implementation of the architectures and 
update laws 

In [9], a direct hardware implementation of a 
practical extension of the HJ network to a first-order 
dynamic network in reported with experimental results. 
Direct implementations represent an avenue of effective 
implementation of the architectures and algorithms for 
the fastest execution of the recovery network. 

Another paradigm includes DSP architectures. 

For a DSP based emulation of the signal separation 
algorithm families discussed here, it will be up to the 
tradeoffs in a particular application to identify the best 
processor architecture and numerical representations, 
e.g., floating or fixed point. To achieve a highly 
integrated solution (e.g., one chip) will require 
embedding a DSP core either from a pre-designed 
device or designed from standard silicon cell libraries. 

The compiler front-end to the DSP assembler 

and linker forms a direct bridge from a high level 
language coded algorithm simulation environment to 
DSP emulation. In addition, a similar direct link exists 
between many computing environments and the DSP 
emulation environments, for example, C/C++ library 
and compilers for various processors. 

Programmable logic can be an integral part of 

the related development process. A programmable 

DSP core (a DSP processor that is designed for 
integration into a custom chip) can be integrated with 
custom logic to differentiate a system and reduce 
system cost, space, and power consumption. 

Proposed dynamic architectures, which ensure 

existence of solutions are augmented with effective 
update laws for the problem of blind 

separation/recovery of independent sources. Computer 
simulations demonstrated successful performance of 
these algorithms. More effectively, the feedback 
architecture lends itself to stable, robust performing 
adaptive networks that enable attaining solutions for a 
broader class of mixing environments. A description of 
the DSP realizations developed by IC Tech, Inc. is also 
outlined. 
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