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ABSTRACT 

Adaptive multichannel L-filters based on marginal ordering 
are studied in this paper when structural constraints such 
as the location-invariance or the unbiasedness are imposed 
on the filter coefficients. Two novel adaptive algorithms are 
derived by using Frost’s algorithm for minimizing the Mean 
Squared Error subject to the above-mentioned constraints 
in the LMS and in the LMS-Newton algorithms. It is de- 
mostrated by experiments that the Frost-LMS algorithm 
has a faster convergence rate than the Frost LMS-Newton 
algorithm but it yields a higher steady-state MSE than that. 

1. INTRODUCTION 

Adaptive signal processing has been an active research area 
for more than two decades. Adaptive filters have been ap- 
plied in a wide variety of problems including system identifi- 
cation, channel equalization, echo cancellation in telephone 
channels [l]. All the above-mentioned problems involve one- 
dimensional (1-D) signals and 1-D linear filters. However, 
many digital signal processing problems cannot be solved 
by using linear techniques. Such problems are related to 
nonlinearities due to noise and/or signal st,atistics, to sys- 
tem nonlinearities in digital signal acquisition etc. In this 
case, a multitude of nonlinear techniques has been proved 
a successful alternative to the linear ones [2]. 

One of the best known nonlinear filter classes is based 
on the order statistics. It uses the concept of data order- 
ing. There is now a plethora of nonlinear filters based on 
data ordering. Among them are the L-filters whose output 
is defined as a linear combination of the order statistics [3]. 
Recently, increasing attention has been given to nonlinear 
processing of vector-valued signals [4, 5, 6, 7, 81. The major 
difficulty in the definition of multichannel order statistics fil- 
ters is the lack of an unambiguous and universally accepted 
definition of ordering for multivariate data [9]. Filters such 
as those proposed in (6, 71 are based on marginal ordering 
whereas other filters are based on reduced ordering [4, 5, 81. 

The main contribution of this paper is in the design 
of adaptive multichannel L-filters based on marginal data 
when structural constraints are imposed on the filter cocffi- 
cients. In other words, the fidelity criterion to be minimized 

is the Mean Squared Error (MSE) between the filter output 
and the desired response subject to a set of constraints on 
the filter coefficients known as structural constraints. Two 
such constraints are the location invariance and the unbi- 
asedness. Two novel adaptive algorithms are derived by 
using the algorithm of Frost [lo] for minimizing the MSE 
subject to the above-mentioned constraints in the LMS and 
in the LMS-Newton algorithms. By examining the learning 
curves, it is found that the Frost-LMS algorithm exhibits 
a faster convergence rate than the Frost LMS-Newton al- 
gorithm but to a higher steady-state MSE. The work pre- 
sented in this paper extends previously reported work [7]. 

The outline of the paper is as follows. Section 2 de- 
scribes the problem treated and our motivation for devel- 
oping constrained adaptive multichannel L-filters. The up- 
dating equations for the filter coefficients are derived in 
Section 3. Finally, experimental results we included in Sec- 
tion 4. 

2. PROBLEM STATEMENT 

The output of a p-channel L-filter of length N operating 
on a sequence of pdimensional vectors {x(/c)} for N odd is 
given by [7]: 

y(k) 5 T[x(k)] = f: Aif@) (1) 
i=l 

where Ai is a (JJ x N) coefficient matrix. Let a:, 1 = 
1 , . . . ,p denote the l-t,” row of matrix Ai and %i(lc) = 

(Z;(l)(k),. . . ,Zi(N)(lE)) , i = 1,. ,p be the (N x 1) vec- 
tor of the order statistics along the i-th channel. Let also 

aci) = (a: 1 a: 1 ... 1 aFi),. Moreover, we define the com- 

posite vector X(/C) = (f:(k) ( %F(/c) 1 . . . I %:(Pc))~. 
Frequently, structural constraints are imposed on the 

filter coefficients. Two such constraints are the location in- 
variance and the unbiasedness. In the single-channel case, 
location invariance implies that the sum of filter coeffi- 
cients must be equal to one. Such a constraint is imposed 
both to single-channel linear adaptive filters (e.g. the two- 
dimensional Least Mean Squares (TDLMS) adaptive filters 
[ll]) and to single-channel nonlinear adaptive filters (e.g. 



the location-invariant LMS L-filter 1121). In the multichan- 
nel case, the optimal nonadaptive location-invariant L-filter 
has been derived in [7]. Let us recall the definition of the 
location-invariant multichannel L-filter first. A multichan- 
nel marginal L-filter is said to be location-invariant [7] if 
its output is able to track small perturbations of its input. 
That is, if x’(k) = x(k) + b then: 

y'(k) = T[x’(k)] = y(k) + b (2) 

where y(k) = T[x(k)]. The definition of a location-invariant 
multichannel L-filter yields the following set of constraints 
imposed on the filter coefficients: 

GTacij = bi i= l,...,p (3) 

where GT is a (p x pN) matrix having the structure: 

with 0 being a (N x 1) vector of zeroes. In (3), bi is the 
i-th basis vector in RP, i.e., a vector whose elements are 
zero except the i-th element which equals 1. Another con- 
straint used in practice is the unbiasedness. A multichannel 
marginal L-filter is said to be an unbiased estimator of lo- 
cation if E[y(k)] = E[s(k)], i.e., 

a& E[X(k)] = E[si(k)]. (5) 

Let us suppose that the observed p-dimensional sig- 
nal {x(k)} can be expressed as a sum of a p-dimensional 
noise-free signal {s(k)} and a noise vector sequence {n(k)} 
of zero mean vector having the same dimensionality, i.e., 
x(k) = s(k) + n(k). The noise vector components are as- 
sumed to be uncorrelated in the general case. In addition, 
we assume that the noise vectors at different values of index 
k are independent identically distributed (i.i.d.) and that 
at each value of index k the signal vector s(k) and the noise 
vector n(k) are uncorrelated. We want to find the multi- 
channel Lfilter coefficient matrices Ai, i = 1, . . . ,p which 
minimize the MSE between the filter output y(k) and the 
noise-free signal s(k) subject to the constraints (3) or (5). 
FolIowing similar reasoning as in [7], but without invoking 
the assumption of a constant signal S, it can be shown that 
the MSE is expressed as: 

is1 

where Rp = E [X(k)IT(k)] and q(i) = E [si(k)RT(k)]. It 

can easily be seen that RP is a composite matrix that con- 
sists of the correlation matrices of the ordered input samples 
from the same channel (e.g. R;i = E[%(k)%T&k)]) as well as 
from different channels (e.g. Rij = E[jli(~)xj (k)], i # j): 

Rlz ... RIP 

. . 

Rzp : 1: ipp 1 (7) 

We can always solve the two constrained minimization prob- 
lems outlined above provided that we are able to calculate 
the moments of the order statistics from univariate popula- 
tions that appear in Rii as well as the product moments of 
the order statistics from bivariate populations that appear 
in Rij, i #j and i = l,... ,p. This is fairly easy for i.i.d. 
input variates, i.e., in the case of a constant signal s(k) = s, 
as has been demonstrated in [7]. Even for independent, non- 
identically distributed input variates the framework tends 
to become very complicated (cf. [7]). The difficulties are 
increased when the observations x(k) and the desired sig- 
nal s(k) are strongly nonstationary. In order to overcome 
this obstacle, we shall resort on iterative algorithms for the 
minimization of e(k) in (6) subject to constraints (3) or (5). 

3. CONSTRAINED MINIMIZATION OF THE 
MEAN SQUARED ERROR 

In this section, the location-invariant and the unbiased adap- 
tive multichannel L-filter based on marginal ordering are 
derived. For each constrained adaptive multichannel L- 
filter Frost’s approach [lo] is used to minimize iteratively 
the MSE subject to constraints in the framework either of 
the LMS algorithm or of the LMSN algorithm. 

3.1. Location-invariant adaptive multichannel L - 
filter 

Let us treat the minimization of the MSE (6) subject to (3). 
The problem under study is formulated as the minimization 
of the following Lagrangian function: 

H(a) = ie(k) + AT 

GTatl) - bl 
[ 1 ; (8) 

GTa 
(PI - bP 

where e(k) is given by (6) and A = (AT ] . . . ] Xz) T is a 

(p2 x 1) vector. By differentiating H(a) with respect to a(i) 
and by demanding aci)(k+ l), i = 1,. . . ,p to satisfy the set 
of constraints (3) we get: 

a(i)(k + 1) = P {a(i)(k) + CL [G(i) - tipa(i + fi. (9) 

P is the projection matriz of dimensions (pN x pN) defined 
by: 

P = [I - G(G~G)-~G~] = [I - +GG’] (lo) 

and fi is a (pN x 1) vector given by: 

fi = G(GTG)-‘bi = ;Gbi i=l,...,p. (11) 

By using instantaneous estimates for it, and q(i), the LMS 
location-invariant multichannel L-filter is obtained: 

t(i)(k + 1) = P (&i)(k) + pei(k)%(k)) + fi i = 1,. . ,p. 

(12) 
It is evident that by replacing ei(k) by -pi(k) the same 
filter structure can be used for the minimization of the total 
output power subject to constraints (3). Such an approach 



can be used when a reference signal is not available. The 
recursion (12) is initialized by: 

a(i)(O) = fi i= l,...,p. (13) 

The vast majority of constrained adaptive algorithms 
relies on the LMS algorithm. To the authors’ knowledge no 
attempt has been made to design constrained adaptive fil- 
ters based on other adaptive algorithms, such as the Recur- 
sive Least Squares (RLS) or the LMS Newton (LMSN) algo- 
rithm. The case is much simpler for the LMSN [13] than for 
the RLS algorithm, because LMSN shares the same frame- 
work with LMS. It is well known that LMSN minimizes the 
cost function (8) as well. It can be shown that the optimal 
solution to the minimization of the cost function (8) is given 
by: 

(14) 

The steepest descent solution is obtained from (14) by adding 
an additional step-size parameter ~1: 

- -1 iWa(k)) 
a(i)& + 1) = a(i)@) - 4% aa( .,(k) . 

t 

By substituting I?.;’ with the estimate 

it,‘(k) = & {ii;‘@ - l)- 

-it,‘(k - l)%(rc)%=(k)it,-‘(I, - 1) 

(7) sy&-l(k - 1)X(k) I 

(15) 

(16) 

and by using instantaneous estimates for the expected val- 
ues involved in the gradient of H(a(k)) with respect to 
aci) (k), the following recursions result: 

H(i)@ + 1) = {I-&;~(~)G [G~&-~(~)G]-‘G~} 

. [&i)(k) + /.&l(k)ei(~)~:(k)] 

+ h,‘(k)G [GTG1(k)GIml bi. (17) 

The comparison between (17) and (11) reveals that the 
structure of the LMSN location-invariant multichannel L- 
filter is the same with that of the LMS location-invariant 
one but with a time-varying matrix P and a time-varying 
vector fi. The new matrix P’(k) and vector f:(k), i = 

1, ‘. . ,P are now given by: 

p’(k) = I - k;l(k)~ [G%;-‘(~)G]- Go (18) 

f:(k) = k;‘(k)~ [G~%~(~)G]-I bi (19) 

The updating equations (17) are also initialized by (13). 

3.2. Unbiased adaptive multichannel L -filter 

Let tip = E[%(/c)] and z = E[si(k)]. Eq. (5) can be rewrit- 
ten as: 

a& ii+ = St’. (20) 
We shall assume that tip has already been estimated and it 
is known. For example, one may use the following recursion: 

G-l*(k) = rilp(k - 1) + ; (X(k) - C-l& - 1)) (21) 

with x&(O) = 0. The minimization of the MSE (6) subject 
to (20) is formulated as the minimization of the following 
Lagrangian function: 

H(a) = +~(k) + f: Xi (a&&, -s) 
i=l 

(22) 

By differentiating H(a) with respect to aci) and by demand- 
ing aci)(k+l) to satisfy the set of constraints (20) we obtain: 

a(i)(k + 1) = a(i)(k)-,(I-z) (&a(i)(k)- 

- q(i)) + (z’ 
cFa(i)(k)) _ 

m,Ttil, 
mp. (23) 

By rearranging the terms in (23) we get: 

a(i)(k + 1) = P” { (a(i)@) + 49(i) - ii,aci,(~))} 

+ f,r’ i=l,...,p (24) 

with 

p” = (IA$J (25) 

f; = s; -ti 
ri$iil, P’ (26) 

The algorithm is initialized by: 

a(i)(O) = f:‘. (27) 

If instantaneous estimates for Rp and q(i) are used, we 
obtain the LMS unbiased multichannel L-filter: 

G(i) (k + 1) = P”(k) {f(i)(k) + pei(k)X(k)} 

+ f;(k) i = 1,. . . ,p (28) 

Let us also consider the minimization of the MSE (6) 
subject to (20) within the framework of LMS-Newton algo- 
rithm. Following similar reasoning it can easily be proved 
that: 

$i) Ck + l) = P”‘(k) {iici)(k) + &~‘(k)ei(k)li;(k)} 

+ f;“(k) i=l,...,p (29) 

with 

P”‘(Ic) = ( 
I _ ri, 1 (~)~Pww4 

iil~(k)k,‘(k)rilp(k) > 

(30) 

..,I) 
fi (k) = 

3&,‘(k)el,(k) 

fil;f(k)&-‘(k)lilp(k)~ 
(31) 

The updating equations (29) can be initialized by: 

a(i)(O) = fi’ (32) 

as well. Eqs. (29)-(32) define the LMSN unbiased multi- 
channel L-filter. 



4. EXPERIMENTAL RESULTS 

A set of experiments is presented in order to assess the 
performance of the location-invariant adaptive multichan- 
nel L-filters that we have discussed so far. 

A two-channel 1-D signal s(k) = s corrupted by addi- 
tive white bivariate contaminated Gaussian noise is treated, 
because for such a signal, the optimal multichannel L-filter 
coefficients have been derived in [7]. Let N(<i, <Z ; ~1, crz ; r) 
denote a joint bivariate Gaussian distribution where the pa- 
rameter & and oi, i = 1,2 is the expected value and the 
standard deviation of each component respectively and r 
is the correlation coefficient. A vector valued signal s = 
(1.0, 2.0)T corrupted by additive white bivariate noise n(k) 
with probability density function (pdf) given by: 

(1 - @)N(O, 0 ; 1,3 ; 0.5) + eN(O,O ; 399 ; 0.7) 

for Q = 0.1 has been used as a test signal as in [7]. The noise 
reduction index (NR) defined as the ratio of the output 
noise power to the input noise power, i.e.: 

NR = 1olog CdYW - swY-(Y(w - s(k)) 
C,(x(k) - s(k))T(x(k) - s(k)). (33) 

is measured and is compared to the one achieved by the 
nonadaptive location-invariant multichannel Lfilter. 

An approximation of the ensemble-averaged learning 
curve for the location-invariant multichannel L-filters un- 
der study has been obtained following the procedure de- 
scribed in [l]. That is, a sequence of 10000 samples of 
{x(k)} has been created and the squared norm of the esti- 
mation error ]]e(lc)]]2 = ]]s(k) - y(lc)]12 has been computed. 
The experiment has been repeated 200 times, each time us- 
ing an independent realization of the process {n(k)}. The 
averaged squared norm of the estimation error is then de- 
termined by computing the ensemble average of ]]e(lc)]12 
over the 200 independent trials of the experiment. The 
learning curves of the LMS and LMSN location-invariant 
multichannel L-filters are given in Figure la and lb, re- 
spectively. The filter length N has been 9 in all cases. The 
recursions have been initialized by using (13). In the plots 
of Figure 1 points every 50 time instants have been used. 
In the location-invariant LMS multichannel L-filter, /I has 
been equal to 5 x 10m5. For the location-invariant LMSN 
multichannel L-filter, p, C have been set to 0.001 and 0.001, 
respectively. The recursion for the computation of the in- 
verse matrix starts with q’(O) = 6-‘I with 6 = 0.01. 
It is seen that LMS exhibits a faster convergence rate but 
to a higher steady state MSE, as is manifested in Table 1 
where the NR achieved by both the adaptive algorithms 
is tabulated. In the same table, the NR achieved by the 
nonadaptive design [7] is included for comparison purposes. 
The NR achieved by the marginal median is included for the 
same purposes as well. The LMSN location-invariant mul- 
tichannel L-filter outperforms the nonadaptive one by 1.4 
dB. This is attributed to the arithmetic errors that occur in 
the estimation of the moments of the marginal order statis- 
tics (i.e., numerical integration or discretization) employed 
in [7]. The very large eigenvalue spread that is inherent to 
the correlation matrix of the order statistics magnifies these 
errors. As a consequence, the filter coefficients are seriously 
effected. 

(b) 

Figure 1: Learning curves of the (a) LMS adaptive 
location-invariant multichannel L-filter; (b) LMSN adap- 
tive location-invariant multichannel L-filter. 

The learning curves of the LMS and LMSN unbiased 
multichannel L-filt,crs have been computed as well. They 
are shown in Figure 2a and 2b, respectively. A variable 
step-size I = 0.1 x (%*%)-’ has been used. It is seen 
that LMS converges faster than LMSN algorithm but to a 
higher steady-state MSE in this case, too. Table 2 summa- 
rizes the NR achieved by both the adaptive algorithms. For 
comparison purposes the NR achieved by the nonadaptive 
unbiased multichannel L-filter is also tabulated. 
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